[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 23, Issue 3 (Fall 2022) ::
IJHST 2022, 23(3): 523-538 Back to browse issues page
The Effect of Abscisic Acid on the Growth Rate, Dry Biomass, Total Lipid and Photosynthetic Pigments of Nannochloropsis salina Microalgae in Guillard (F/2) Medium
Mojtaba Ghasemi , Leila Fahmideh , Salehe Ganjali , Mojtaba Keykhasaber , Mohammad Modarresi
Abstract:   (537 Views)
Nannochloropsis salina is a promising species for lipid production, which is used in aquaculture and biofuel production. On the other hand, plant phytohormones also have different effects on the metabolism of protozoan algae. Therefore, an experiment was conducted with the aim of investigating the effect of abscisic acid (ABA) concentrations on growth and doubling time, chlorophyll, carotenoid, dry biomass, endogenous ABA and total lipid of N. salina microalgae in Gaillard (f/2) medium. The experimental treatments included 0 (control), 0.5, 10 and 20 mg L-1  ABA concentrations. This experiment was conducted in a completely randomized design (CRD) with three replications during 2019-2020. The analysis of variance showed that ABA treatment was significant on all studied characteristics at the 5% level. The treatment of 20 mg L-1 ‌‌ABA increased the growth rate, chlorophyll, endogenous ABA and total lipid in N.‌‌salina microalgae. The highest carotenoids and dry biomass were observed in 0.5 mg L-1 and control treatments, respectively. The findings of this study show that the concentration of 0.5 mg L-1 ABA is effective on lipid and carotenoid production of microalgae, but to increase total lipid production, the concentration of mg L-1 ABA is more suitable.
Keywords: Biofuel, Carotenoids, Fatty acid, Plant growth regulator
Full-Text [PDF 616 kb]   (105 Downloads)    
Type of Study: Research | Subject: Biotechnology and Tissue culture
Received: 2021/05/30 | Accepted: 2021/08/21 | Published: 2023/01/3
References
1. Barickman, T.C., D.A. Kopsell and C.E. Sams. 2014. Abscisic acid increases carotenoid and chlorophyll concentrations in leaves and fruit of two tomato genotypes. J. Am. Soc. Hort. Sci. 139(3):261-66 [DOI:10.21273/JASHS.139.3.261]
2. Bligh, E.G and W.J. Dyer. 1959. Canadian Journal of Biochemistry and Physiology. Can. J. Biochem. Physiol. 37(8): [DOI:10.1139/o59-099]
3. Contreras-Pool, P.Y., S. Peraza-Echeverria, Á.F. Ku-González and V.A. Herrera-Valencia. 2016. The phytohormone abscisic acid increases triacylglycerol content in the green microalga chlorella saccharophila (Chlorophyta). Algae, 31(3):267-76 [DOI:10.4490/algae.2016.31.9.3]
4. Do, T.C.V., D.T. Tran, T.G. Le and Q.T. Nguyen. 2020. Characterization of Endogenous Auxins and Gibberellins Produced by Chlorella sorokiniana TH01 under Phototrophic and Mixtrophic Cultivation Modes toward Applications in Microalgal Biorefinery and Crop Research. J. Chem. 2020: [DOI:10.1155/2020/4910621]
5. Du, H., F. Ahmed, B. Lin, Z. Li and Y. Huang. 2017. The effects of plant growth regulators on cell growth, protein, carotenoid, PUFAs and lipid production of chlorella pyrenoidosa ZF strain. Energies, 10(11): [DOI:10.3390/en10111696]
6. Fawley, K.P. and M.W. Fawley. 2007. Observations on the Diversity and Ecology of Freshwater Nannochloropsis (Eustigmatophyceae), with Descriptions of New Taxa. Protist. 158(3):325-36 [DOI:10.1016/j.protis.2007.03.003]
7. Forján, E., I. Garbayo, C. Casal and C. Vílchez. 2007. Enhancement of carotenoid production in Nannochloropsis by phosphate and sulphur limitation. 356-64
8. Gill, S.S., S. Willette, B. Dungan, J.M. Jarvis,and T. Schaub. 2018. Suboptimal Temperature Acclimation Affects Kennedy Pathway Gene Expression, Lipidome and Metabolite Profile of Nannochloropsis salina during PUFA Enriched TAG Synthesis. Mar. Drugs. 16(11):1-21 [DOI:10.3390/md16110425]
9. Guillard, R. 1975. Culture of phytoplankton for feeding marine invertebrates. Cult. Mar. Invertebr. Anim. 29-60 [DOI:10.1007/978-1-4615-8714-9_3]
10. Han, X., H. Zeng, P. Bartocci, F. Fantozzi and Y. Yan. 2018. Phytohormones and Effects on Growth and Metabolites of Microalgae: A Review. Fermentation. 4(2):25 [DOI:10.3390/fermentation4020025]
11. Kobayashi, M., Y. Todoroki, N. Hirai, Y. Kurimura, H. Ohigashi and Y. Tsuji. 1998. Biological activities of abscisic acid analogs in the morphological change of the green alga Haematococcus pluvialis. J. Ferment. Bioeng. 85(5):529-31. [DOI:10.1016/S0922-338X(98)80076-7]
12. Li-beisson, Y.N.Y. 2016. Lipids in Plant and Algae Development. . 86:179-205.
13. Lichtenthaler, H.K. 1988. In Vivo Chlorophyll Fluorescence as a Tool for Stress Detection in Plants. In Applications of Chlorophyll Fluorescence in Photosynthesis Research, Stress Physiology, Hydrobiology and Remote Sensing, pp. 129-42. [DOI:10.1007/978-94-009-2823-7_16]
14. Lv, H., Q.E. Wang, S. Wang, B. Qi, J. He and S. Jia. 2019. Enhancing biomass production of Dunaliella salina via optimized combinational application of phytohormones. Aquaculture. 503 (December 2018):146-55 [DOI:10.1016/j.aquaculture.2018.12.077]
15. Mühlroth, A., K. Li, G. Røkke, P. Winge and Y. Olsen. 2013. Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of chromista. Mar. Drugs. 11(11):4662-97 [DOI:10.3390/md11114662]
16. Noble, A., A. Kisiala, A. Galer, D. Clysdale and RJN. Emery. 2014. Euglena gracilis (Euglenophyceae) produces abscisic acid and cytokinins and responds to their exogenous application singly and in combination with other growth regulators. Eur. J. Phycol. 49(2):244-54 [DOI:10.1080/09670262.2014.911353]
17. Norlina, R., M.N. Norashikin, SH. Loh, A. Aziz and TS. Cha. 2020. Exogenous Abscisic Acid Supplementation at Early Stationary Growth Phase Triggers Changes in the Regulation of Fatty Acid Biosynthesis in Chlorella vulgaris UMT-M1. Appl. Biochem. Biotechnol. 191(4):1653-69 [DOI:10.1007/s12010-020-03312-y]
18. Park, W.K., G. Yoo, M. Moon, C.W. Kim, Y.E. Choi and J.W. Yang. 2013. Phytohormone supplementation significantly increases growth of chlamydomonas reinhardtii cultivated for biodiesel production. Appl. Biochem. Biotechnol. 171(5):1128-42 [DOI:10.1007/s12010-013-0386-9]
19. Romanenko, E.A., I.V. Kosakovskaya and P.A. Romanenko. 2015. Phytohormones of microalgae: Biological role and involvement in the regulation of physiological processes Pt I. Auxins, Abscisic acid, Ethylene. Int. J. Algae. 17(3):275-89 [DOI:10.1615/InterJAlgae.v17.i3.80]
20. Sivaramakrishnan, R. and A. Incharoensakdi. 2020. Plant hormone induced enrichment of Chlorella sp. omega-3 fatty acids. Biotechnol. Biofuels. 13(1):1-14 [DOI:10.1186/s13068-019-1647-9]
21. Stewart, C.R. and G. Voetberg. 1985. Relationship between Stress-Induced ABA and Proline Accumulations and ABA-Induced Proline Accumulation in Excised Barley Leaves. Plant Physiol. 79(1):24-27 [DOI:10.1104/pp.79.1.24]
22. Sulochana, S.B. and M. Arumugam. 2016. Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition. Bioresour. Technol. 213:198-203 [DOI:10.1016/j.biortech.2016.02.078]
23. Willette, S., S.S. Gill, B. Dungan, T.M. Schaub and J.M. Jarvis. 2018. Alterations in lipidome and metabolome profiles of Nannochloropsis salina in response to reduced culture temperature during sinusoidal temperature and light. Algal Res. 32(February 2017):79-92 [DOI:10.1016/j.algal.2018.03.001]
24. Yang, X., Y.N. Yang, L.J. Xue, M.J. Zou and J.Y. Liu. 2011. Rice ABI5-like1 regulates abscisic acid and auxin responses by affecting the expression of ABRE-containing genes. Plant Physiol. 156(3):1397-1409 [DOI:10.1104/pp.111.173427]
25. Young, A.J. 1991. The photoprotective role of carotenoids in higher plants. Physiol. Plant. 83(4):702-8 [DOI:10.1034/j.1399-3054.1991.830426.x]
26. Barickman, T.C., D.A. Kopsell and C.E. Sams. 2014. Abscisic acid increases carotenoid and chlorophyll concentrations in leaves and fruit of two tomato genotypes. J. Am. Soc. Hort. Sci. 139(3):261-66 [DOI:10.21273/JASHS.139.3.261]
27. Bligh, E.G and W.J. Dyer. 1959. Canadian Journal of Biochemistry and Physiology. Can. J. Biochem. Physiol. 37(8): [DOI:10.1139/o59-099]
28. Contreras-Pool, P.Y., S. Peraza-Echeverria, Á.F. Ku-González and V.A. Herrera-Valencia. 2016. The phytohormone abscisic acid increases triacylglycerol content in the green microalga chlorella saccharophila (Chlorophyta). Algae, 31(3):267-76 [DOI:10.4490/algae.2016.31.9.3]
29. Do, T.C.V., D.T. Tran, T.G. Le and Q.T. Nguyen. 2020. Characterization of Endogenous Auxins and Gibberellins Produced by Chlorella sorokiniana TH01 under Phototrophic and Mixtrophic Cultivation Modes toward Applications in Microalgal Biorefinery and Crop Research. J. Chem. 2020: [DOI:10.1155/2020/4910621]
30. Du, H., F. Ahmed, B. Lin, Z. Li and Y. Huang. 2017. The effects of plant growth regulators on cell growth, protein, carotenoid, PUFAs and lipid production of chlorella pyrenoidosa ZF strain. Energies, 10(11): [DOI:10.3390/en10111696]
31. Fawley, K.P. and M.W. Fawley. 2007. Observations on the Diversity and Ecology of Freshwater Nannochloropsis (Eustigmatophyceae), with Descriptions of New Taxa. Protist. 158(3):325-36 [DOI:10.1016/j.protis.2007.03.003]
32. Forján, E., I. Garbayo, C. Casal and C. Vílchez. 2007. Enhancement of carotenoid production in Nannochloropsis by phosphate and sulphur limitation. 356-64
33. Gill, S.S., S. Willette, B. Dungan, J.M. Jarvis,and T. Schaub. 2018. Suboptimal Temperature Acclimation Affects Kennedy Pathway Gene Expression, Lipidome and Metabolite Profile of Nannochloropsis salina during PUFA Enriched TAG Synthesis. Mar. Drugs. 16(11):1-21 [DOI:10.3390/md16110425]
34. Guillard, R. 1975. Culture of phytoplankton for feeding marine invertebrates. Cult. Mar. Invertebr. Anim. 29-60 [DOI:10.1007/978-1-4615-8714-9_3]
35. Han, X., H. Zeng, P. Bartocci, F. Fantozzi and Y. Yan. 2018. Phytohormones and Effects on Growth and Metabolites of Microalgae: A Review. Fermentation. 4(2):25 [DOI:10.3390/fermentation4020025]
36. Kobayashi, M., Y. Todoroki, N. Hirai, Y. Kurimura, H. Ohigashi and Y. Tsuji. 1998. Biological activities of abscisic acid analogs in the morphological change of the green alga Haematococcus pluvialis. J. Ferment. Bioeng. 85(5):529-31. [DOI:10.1016/S0922-338X(98)80076-7]
37. Li-beisson, Y.N.Y. 2016. Lipids in Plant and Algae Development. . 86:179-205.
38. Lichtenthaler, H.K. 1988. In Vivo Chlorophyll Fluorescence as a Tool for Stress Detection in Plants. In Applications of Chlorophyll Fluorescence in Photosynthesis Research, Stress Physiology, Hydrobiology and Remote Sensing, pp. 129-42. [DOI:10.1007/978-94-009-2823-7_16]
39. Lv, H., Q.E. Wang, S. Wang, B. Qi, J. He and S. Jia. 2019. Enhancing biomass production of Dunaliella salina via optimized combinational application of phytohormones. Aquaculture. 503 (December 2018):146-55 [DOI:10.1016/j.aquaculture.2018.12.077]
40. Mühlroth, A., K. Li, G. Røkke, P. Winge and Y. Olsen. 2013. Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of chromista. Mar. Drugs. 11(11):4662-97 [DOI:10.3390/md11114662]
41. Noble, A., A. Kisiala, A. Galer, D. Clysdale and RJN. Emery. 2014. Euglena gracilis (Euglenophyceae) produces abscisic acid and cytokinins and responds to their exogenous application singly and in combination with other growth regulators. Eur. J. Phycol. 49(2):244-54 [DOI:10.1080/09670262.2014.911353]
42. Norlina, R., M.N. Norashikin, SH. Loh, A. Aziz and TS. Cha. 2020. Exogenous Abscisic Acid Supplementation at Early Stationary Growth Phase Triggers Changes in the Regulation of Fatty Acid Biosynthesis in Chlorella vulgaris UMT-M1. Appl. Biochem. Biotechnol. 191(4):1653-69 [DOI:10.1007/s12010-020-03312-y]
43. Park, W.K., G. Yoo, M. Moon, C.W. Kim, Y.E. Choi and J.W. Yang. 2013. Phytohormone supplementation significantly increases growth of chlamydomonas reinhardtii cultivated for biodiesel production. Appl. Biochem. Biotechnol. 171(5):1128-42 [DOI:10.1007/s12010-013-0386-9]
44. Romanenko, E.A., I.V. Kosakovskaya and P.A. Romanenko. 2015. Phytohormones of microalgae: Biological role and involvement in the regulation of physiological processes Pt I. Auxins, Abscisic acid, Ethylene. Int. J. Algae. 17(3):275-89 [DOI:10.1615/InterJAlgae.v17.i3.80]
45. Sivaramakrishnan, R. and A. Incharoensakdi. 2020. Plant hormone induced enrichment of Chlorella sp. omega-3 fatty acids. Biotechnol. Biofuels. 13(1):1-14 [DOI:10.1186/s13068-019-1647-9]
46. Stewart, C.R. and G. Voetberg. 1985. Relationship between Stress-Induced ABA and Proline Accumulations and ABA-Induced Proline Accumulation in Excised Barley Leaves. Plant Physiol. 79(1):24-27 [DOI:10.1104/pp.79.1.24]
47. Sulochana, S.B. and M. Arumugam. 2016. Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition. Bioresour. Technol. 213:198-203 [DOI:10.1016/j.biortech.2016.02.078]
48. Willette, S., S.S. Gill, B. Dungan, T.M. Schaub and J.M. Jarvis. 2018. Alterations in lipidome and metabolome profiles of Nannochloropsis salina in response to reduced culture temperature during sinusoidal temperature and light. Algal Res. 32(February 2017):79-92 [DOI:10.1016/j.algal.2018.03.001]
49. Yang, X., Y.N. Yang, L.J. Xue, M.J. Zou and J.Y. Liu. 2011. Rice ABI5-like1 regulates abscisic acid and auxin responses by affecting the expression of ABRE-containing genes. Plant Physiol. 156(3):1397-1409 [DOI:10.1104/pp.111.173427]
50. Young, A.J. 1991. The photoprotective role of carotenoids in higher plants. Physiol. Plant. 83(4):702-8 [DOI:10.1111/j.1399-3054.1991.tb02490.x]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghasemi M, Fahmideh L, Ganjali S, Keykhasaber M, Modarresi M. The Effect of Abscisic Acid on the Growth Rate, Dry Biomass, Total Lipid and Photosynthetic Pigments of Nannochloropsis salina Microalgae in Guillard (F/2) Medium. IJHST 2022; 23 (3) :523-538
URL: http://journal-irshs.ir/article-1-551-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 23, Issue 3 (Fall 2022) Back to browse issues page
مجله علوم و فنون باغبانی ایران Iranian Journal of Horticultural Science and Technology
Persian site map - English site map - Created in 0.04 seconds with 37 queries by YEKTAWEB 4645