[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
Publication Ethics::
Reveiwers::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 23, Issue 3 (Fall 2022) ::
IJHST 2022, 23(3): 473-484 Back to browse issues page
Improving the Flower Quality of Gerbera (Gerbera jamesonii ‘Bayadere’) Using LED Light and Foliar Application of Calcium Chloride
Hamid Reza Roosta , Fatemeh Nili , Ali Pourkhaloee , Naser Askari
Abstract:   (825 Views)
The purpose of the present study was to improve the vegetative and reproductive growth of gerbera (Gerbera jamesonii ‘Bayadere’) using different light spectra and foliar application of calcium. Light spectra of red (100%), blue (100%), and red (70%) + blue (30%) were used in addition to natural light in greenhouse. Calcium chloride (CaCl2: 0, 0.5, 1, and 1.5 g L-1) was foliar sprayed. The highest number of leaves (20) was observed under combined (red + blue) LED lights + 0.5 g L-1 CaCl2, while the lowest number (8) was obtained under natural light conditions. Combined LED lights + 1 g L-1 CaCl2 produced the largest leaf area (117.90 cm2). Under the red light, the lowest leaf area (29.51 cm2) was observed. The highest diameter of flower stem, neck, and capitulum was obtained by application of combined LED lights and 1.5 g L-1 CaCl2. By separate application of combined LED lights or calcium chloride, fresh weight of flower stem and capitulum were significantly increased. The maximum (65.83 ̊) and the minimum (2.35 ̊) neck bent were observed under natural sunlight + 0  g L-1 CaCl2 and combined LED lights + 0 g L-1 CaCl2, respectively. Totally, application of combined (70% red + 30% blue) LED lights along with foliar spraying of 1-1.5 g L-1 CaCl2 is recommended to improve the flower quality of this cultivar of gerbera.  
Keywords: Artificial lighting, Cut flower, Foliar nutrition, Greenhouse, Soilless culture
Full-Text [PDF 1024 kb]   (249 Downloads)    
Type of Study: Research | Subject: Ornamental plants
Received: 2021/10/2 | Accepted: 2022/01/11 | Published: 2022/12/20
References
1. Abdolmaleki, M., M. Khosh-Khui, S. Eshghi, and A. Ramezanian. 2015. Improvement in vase life of cut rose cv."Dolce Vita" by preharvest foliar application of calcium chloride and salicylic acid. Int. J. Hort. Sci. Technol. 2:55-66.
2. Aghdam, M., M. Hassan Pour Asil, M. Ghasemnezhad, and S.A.A. Mousavi Mirkalaei. 2019. Effects of pre-harvest applications of different source of calcium on the cell wall fractions and stem bending disorder of Gerbera (Gerbera jamesonii L.) cultivar flowers. Adv. Hort. Sci. 33:57-65.
3. Alallaq, S., A. Ranjan, F. Brunoni, O. Novák, A. Lakehal, and C. Bellini. 2020. Red light controls adventitious root regeneration by modulating hormone homeostasis in Picea abies seedlings. Front. Plant Sci. 11:586140. [DOI:10.3389/fpls.2020.586140]
4. Bhattarai, K., A. Kareem, and Z. Deng. 2021. In vivo induction and characterization of polyploids in gerbera daisy. Sci. Hort. 282:110054. [DOI:10.1016/j.scienta.2021.110054]
5. Cheng, G., L. Wang, S. He, J. Liu, and H. Huang. 2020. Involvement of pectin and hemicellulose depolymerization in cut gerbera flower stem bending during vase life. Postharvest Biol. Technol. 167:111231. [DOI:10.1016/j.postharvbio.2020.111231]
6. Dole, J.M. and H.F. Wilkins. 2000. Floriculture-Principles and Species. Prentice Hall Pub., Washington U.S.
7. Halevy, A., S. Torre, A. Borochov, R. Porat, S. Philosoph-Hadas, S. Meir, and H. Friedman. 2001. Calcium in regulation of postharvest life of flowers. Acta Hort. 543:345-351. [DOI:10.17660/ActaHortic.2001.543.42]
8. Hepler, P.K., and R.O. Wayne. 1985. Calcium and plant development. Annu. Rev. Plant Physiol. 36:397-439. [DOI:10.1146/annurev.pp.36.060185.002145]
9. Hisamatsu, T., K. Sumitomo, and H. Shimizu. 2008. End-of-day far-red treatment enhances responsiveness to gibberellins and promotes stem extension in chrysanthemum. J. Hort. Sci. Biotechnol. 83:695-700. [DOI:10.1080/14620316.2008.11512446]
10. Kasajima, S., N. Inoue, R. Mahmud, and M. Kato. 2008. Developmental responses of wheat cv. Norin 61 to fluence rate of green light. Plant Prod. Sci. 11:76-81. [DOI:10.1626/pps.11.76]
11. Klepper, B. 1991. Root-shoot relationships, p. 265-286. In: Y. Waisel and A. Eshel (eds.). Plant Roots: The Hidden Half. Marcel Dekker, New York.
12. Llewellyn, D., K. Schiestel, and Y. Zheng. 2019. Light-emitting diodes can replace high-pressure sodium lighting for cut gerbera production. HortScience, 54:95-99. [DOI:10.21273/HORTSCI13270-18]
13. Llewellyn, D., K. Schiestel, and Y. Zheng. 2020. Increasing levels of supplemental LED light enhances the rate flower development of greenhouse-grown cut gerbera but does not affect flower size and quality. Agron. 10:1332. [DOI:10.3390/agronomy10091332]
14. Lv, G., D. Tang, F. Chen, Y. Sun, W. Fang, Z. Guan, Z. Liu, and S. Chen. 2011. The anatomy and physiology of spray cut chrysanthemum pedicels, and expression of a caffeic acid 3-O-methyltransferase homologue. Postharvest Biol. Technol. 60:244-250. [DOI:10.1016/j.postharvbio.2011.01.004]
15. Magar, Y.G., A. Noguchi, S. Furufuji, H. Kato, and W. Amaki. 2019. Effects of light quality during supplemental lighting on Phalaenopsis flowering. In III International Orchid Symposium 1262, 75-80. 2019. [DOI:10.17660/ActaHortic.2019.1262.11]
16. Marschner, H. 1995. Mineral Nutrition of Higher Plants (2nd Ed.). Academic Press Inc., London, UK.
17. Monfared, A., M.R. Nabid, and A.A.H. Roustaeian. 2002. Composition of a carvone chemotype of Mentha longifolia L. Huds. from Iran. J. Essent. Oil Res. 14:51-52. [DOI:10.1080/10412905.2002.9699761]
18. Nissim-Levi, A., M. Kitron, Y. Nishri, R. Ovadia, I. Forer, and M. Oren-Shamir. 2019. Effects of blue and red LED lights on growth and flowering of Chrysanthemum morifolium. Sci. Hort. 254:77-83. [DOI:10.1016/j.scienta.2019.04.080]
19. Paradikovic, N., J. Mustapic-Karlic, T.Teklic, V. Cesar, T.Vinkovic, M. Lisjak, M. Spoljarevic, and D. Iljkic. 2008. The role of light regime and substrate in photosynthetic pigments, free proline content and flower quality of Gerbera jamesonii L. Poljoprivreda (Osijek). 14:17-22.
20. Paradiso, R., and S. Proietti. 2021. Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: The state of the art and the opportunities of modern LED systems. J. Plant Growth Regul. 41:742-780. [DOI:10.1007/s00344-021-10337-y]
21. Perik, R.R., D. Razé, A. Ferrante, and W.G. van Doorn. 2014. Stem bending in cut Gerbera jamesonii flowers: Effects of a pulse treatment with sucrose and calcium ions. Postharvest Biol.Technol. 98:7-13. [DOI:10.1016/j.postharvbio.2014.06.008]
22. Perik, R.R., D. Razé, H. Harkema, Y. Zhong, and W.G. van Doorn. 2012. Bending in cut Gerbera jamesonii flowers relates to adverse water relations and lack of stem sclerenchyma development, not to expansion of the stem central cavity or stem elongation. Postharvest Biol. Technol. 74:11-18. [DOI:10.1016/j.postharvbio.2012.06.009]
23. Pettersen, R.I., and H.R. Gislerød. 2003. Effects of lighting period and temperature on growth, yield and keeping quality of Gerbera jamesonii Bolus. Eur. J. Hort. Sci. 68:32-37.
24. Picchioni, G.A., M. Valenzuela-Vazquez, and S. Armenta-Sanchez. 2001. Calcium-activated root growth and mineral nutrient accumulation of Lupinus havardii: ecophysiological and horticultural significance. J. Am. Soc. Hort. Sci. 126:631-637. [DOI:10.21273/JASHS.126.5.631]
25. Sabzalian, M.R., P. Heydarizadeh, M. Zahedi, A. Boroomand, M. Agharokh, M.R. Sahba, and B. Schoefs. 2014. Higher performance of vegetables, flowers and medicinal plants in a red-blue LED incubator for indoor plant productions. Agron. Sustain. Dev. 34:879-886. [DOI:10.1007/s13593-014-0209-6]
26. Tan, W., Q.W. Meng, M. Brestic, K. Olsovska, and X. Yang. 2011. Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. J. Plant Physiol. 168:2063-2071. [DOI:10.1016/j.jplph.2011.06.009]
27. Torre, S., A. Borochov, and A.H. Halevy. 1999. Calcium regulation of senescence in rose petals. Physiol. Plant. 107:214-219. [DOI:10.1034/j.1399-3054.1999.100209.x]
28. van Gelderen, K., C. Kang, and R. Pierik. 2018. Light signaling, root development, and plasticity. Plant Physiol. 176:1049-1060. [DOI:10.1104/pp.17.01079]
29. van Ieperen, W., and A. van Gelder. 2006. Ion-mediated flow changes suppressed by minimal calcium presence in xylem sap in Chrysanthemum and Prunus laurocerasus. J. Exp. Bot. 57:2743-2750. [DOI:10.1093/jxb/erl039]
30. Xu, Y., Y. Liang, and M. Yang. 2019. Effects of composite LED light on root growth and antioxidant capacity of Cunninghamia lanceolata tissue culture seedlings. Sci. Rep. 9:1-9. [DOI:10.1038/s41598-019-46139-2]
31. Zieslin, N., and Y. Mor. 1990. Light on roses. A review. Sci.Hort. 43:1-14. [DOI:10.1016/0304-4238(90)90031-9]
32. Abdolmaleki, M., M. Khosh-Khui, S. Eshghi, and A. Ramezanian. 2015. Improvement in vase life of cut rose cv."Dolce Vita" by preharvest foliar application of calcium chloride and salicylic acid. Int. J. Hort. Sci. Technol. 2:55-66.
33. Aghdam, M., M. Hassan Pour Asil, M. Ghasemnezhad, and S.A.A. Mousavi Mirkalaei. 2019. Effects of pre-harvest applications of different source of calcium on the cell wall fractions and stem bending disorder of Gerbera (Gerbera jamesonii L.) cultivar flowers. Adv. Hort. Sci. 33:57-65.
34. Alallaq, S., A. Ranjan, F. Brunoni, O. Novák, A. Lakehal, and C. Bellini. 2020. Red light controls adventitious root regeneration by modulating hormone homeostasis in Picea abies seedlings. Front. Plant Sci. 11:586140. [DOI:10.3389/fpls.2020.586140]
35. Bhattarai, K., A. Kareem, and Z. Deng. 2021. In vivo induction and characterization of polyploids in gerbera daisy. Sci. Hort. 282:110054. [DOI:10.1016/j.scienta.2021.110054]
36. Cheng, G., L. Wang, S. He, J. Liu, and H. Huang. 2020. Involvement of pectin and hemicellulose depolymerization in cut gerbera flower stem bending during vase life. Postharvest Biol. Technol. 167:111231. [DOI:10.1016/j.postharvbio.2020.111231]
37. Dole, J.M. and H.F. Wilkins. 2000. Floriculture-Principles and Species. Prentice Hall Pub., Washington U.S.
38. Halevy, A., S. Torre, A. Borochov, R. Porat, S. Philosoph-Hadas, S. Meir, and H. Friedman. 2001. Calcium in regulation of postharvest life of flowers. Acta Hort. 543:345-351. [DOI:10.17660/ActaHortic.2001.543.42]
39. Hepler, P.K., and R.O. Wayne. 1985. Calcium and plant development. Annu. Rev. Plant Physiol. 36:397-439. [DOI:10.1146/annurev.pp.36.060185.002145]
40. Hisamatsu, T., K. Sumitomo, and H. Shimizu. 2008. End-of-day far-red treatment enhances responsiveness to gibberellins and promotes stem extension in chrysanthemum. J. Hort. Sci. Biotechnol. 83:695-700. [DOI:10.1080/14620316.2008.11512446]
41. Kasajima, S., N. Inoue, R. Mahmud, and M. Kato. 2008. Developmental responses of wheat cv. Norin 61 to fluence rate of green light. Plant Prod. Sci. 11:76-81. [DOI:10.1626/pps.11.76]
42. Klepper, B. 1991. Root-shoot relationships, p. 265-286. In: Y. Waisel and A. Eshel (eds.). Plant Roots: The Hidden Half. Marcel Dekker, New York.
43. Llewellyn, D., K. Schiestel, and Y. Zheng. 2019. Light-emitting diodes can replace high-pressure sodium lighting for cut gerbera production. HortScience, 54:95-99. [DOI:10.21273/HORTSCI13270-18]
44. Llewellyn, D., K. Schiestel, and Y. Zheng. 2020. Increasing levels of supplemental LED light enhances the rate flower development of greenhouse-grown cut gerbera but does not affect flower size and quality. Agron. 10:1332. [DOI:10.3390/agronomy10091332]
45. Lv, G., D. Tang, F. Chen, Y. Sun, W. Fang, Z. Guan, Z. Liu, and S. Chen. 2011. The anatomy and physiology of spray cut chrysanthemum pedicels, and expression of a caffeic acid 3-O-methyltransferase homologue. Postharvest Biol. Technol. 60:244-250. [DOI:10.1016/j.postharvbio.2011.01.004]
46. Magar, Y.G., A. Noguchi, S. Furufuji, H. Kato, and W. Amaki. 2019. Effects of light quality during supplemental lighting on Phalaenopsis flowering. In III International Orchid Symposium 1262, 75-80. 2019. [DOI:10.17660/ActaHortic.2019.1262.11]
47. Marschner, H. 1995. Mineral Nutrition of Higher Plants (2nd Ed.). Academic Press Inc., London, UK.
48. Monfared, A., M.R. Nabid, and A.A.H. Roustaeian. 2002. Composition of a carvone chemotype of Mentha longifolia L. Huds. from Iran. J. Essent. Oil Res. 14:51-52. [DOI:10.1080/10412905.2002.9699761]
49. Nissim-Levi, A., M. Kitron, Y. Nishri, R. Ovadia, I. Forer, and M. Oren-Shamir. 2019. Effects of blue and red LED lights on growth and flowering of Chrysanthemum morifolium. Sci. Hort. 254:77-83. [DOI:10.1016/j.scienta.2019.04.080]
50. Paradikovic, N., J. Mustapic-Karlic, T.Teklic, V. Cesar, T.Vinkovic, M. Lisjak, M. Spoljarevic, and D. Iljkic. 2008. The role of light regime and substrate in photosynthetic pigments, free proline content and flower quality of Gerbera jamesonii L. Poljoprivreda (Osijek). 14:17-22.
51. Paradiso, R., and S. Proietti. 2021. Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: The state of the art and the opportunities of modern LED systems. J. Plant Growth Regul. 41:742-780. [DOI:10.1007/s00344-021-10337-y]
52. Perik, R.R., D. Razé, A. Ferrante, and W.G. van Doorn. 2014. Stem bending in cut Gerbera jamesonii flowers: Effects of a pulse treatment with sucrose and calcium ions. Postharvest Biol.Technol. 98:7-13. [DOI:10.1016/j.postharvbio.2014.06.008]
53. Perik, R.R., D. Razé, H. Harkema, Y. Zhong, and W.G. van Doorn. 2012. Bending in cut Gerbera jamesonii flowers relates to adverse water relations and lack of stem sclerenchyma development, not to expansion of the stem central cavity or stem elongation. Postharvest Biol. Technol. 74:11-18. [DOI:10.1016/j.postharvbio.2012.06.009]
54. Pettersen, R.I., and H.R. Gislerød. 2003. Effects of lighting period and temperature on growth, yield and keeping quality of Gerbera jamesonii Bolus. Eur. J. Hort. Sci. 68:32-37.
55. Picchioni, G.A., M. Valenzuela-Vazquez, and S. Armenta-Sanchez. 2001. Calcium-activated root growth and mineral nutrient accumulation of Lupinus havardii: ecophysiological and horticultural significance. J. Am. Soc. Hort. Sci. 126:631-637. [DOI:10.21273/JASHS.126.5.631]
56. Sabzalian, M.R., P. Heydarizadeh, M. Zahedi, A. Boroomand, M. Agharokh, M.R. Sahba, and B. Schoefs. 2014. Higher performance of vegetables, flowers and medicinal plants in a red-blue LED incubator for indoor plant productions. Agron. Sustain. Dev. 34:879-886. [DOI:10.1007/s13593-014-0209-6]
57. Tan, W., Q.W. Meng, M. Brestic, K. Olsovska, and X. Yang. 2011. Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. J. Plant Physiol. 168:2063-2071. [DOI:10.1016/j.jplph.2011.06.009]
58. Torre, S., A. Borochov, and A.H. Halevy. 1999. Calcium regulation of senescence in rose petals. Physiol. Plant. 107:214-219. [DOI:10.1034/j.1399-3054.1999.100209.x]
59. van Gelderen, K., C. Kang, and R. Pierik. 2018. Light signaling, root development, and plasticity. Plant Physiol. 176:1049-1060. [DOI:10.1104/pp.17.01079]
60. van Ieperen, W., and A. van Gelder. 2006. Ion-mediated flow changes suppressed by minimal calcium presence in xylem sap in Chrysanthemum and Prunus laurocerasus. J. Exp. Bot. 57:2743-2750. [DOI:10.1093/jxb/erl039]
61. Xu, Y., Y. Liang, and M. Yang. 2019. Effects of composite LED light on root growth and antioxidant capacity of Cunninghamia lanceolata tissue culture seedlings. Sci. Rep. 9:1-9. [DOI:10.1038/s41598-019-46139-2]
62. Zieslin, N., and Y. Mor. 1990. Light on roses. A review. Sci.Hort. 43:1-14. [DOI:10.1016/0304-4238(90)90031-9]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Roosta H R, Nili F, Pourkhaloee A, Askari N. Improving the Flower Quality of Gerbera (Gerbera jamesonii ‘Bayadere’) Using LED Light and Foliar Application of Calcium Chloride. IJHST 2022; 23 (3) :473-484
URL: http://journal-irshs.ir/article-1-578-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 23, Issue 3 (Fall 2022) Back to browse issues page
مجله علوم و فنون باغبانی ایران Iranian Journal of Horticultural Science and Technology
Persian site map - English site map - Created in 0.1 seconds with 35 queries by YEKTAWEB 4710