[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 23, Issue 3 (Fall 2022) ::
IJHST 2022, 23(3): 447-462 Back to browse issues page
Assessment of the Effect of Optical Spectra (LED) and TiO2 and ZnO Nanoparticles on Vegetative Embryogenesis and Regeneration of Some Ecotypes in Ajowan (Trachyspermum ammi L.)
Narges Moradi , Seyed Ahmad Sadat Noori , Yasin Dumani , Fatemeh Amini
Tehran university
Abstract:   (973 Views)
Ajowan (Trachyspermum ammi L) belongs to the Apiaceae family. Using plant tissue culture techniques, plant genetic diversity can be conserved in a controlled environment. The aim of the present study was to investigate the effect of different concentrations of ZnO and TiO2 nanoparticles and light qualities on somatic embryogenesis of ajowan and regeneration. The present experiment was framed in factorial (factors including ecotype, nanoparticles, optical spectrum) based on completely randomized design in three replicates. After the addition of nanoparticles to the MS medium, the explants were placed under red, blue, and light spectra and combined of them. The results showed that the use of ZnO and TiO2 nanoparticles reduced the percentage of fungal and bacterial contamination compared to the control treatment. With increasing the concentration of TiO2 nanoparticles under blue and red spectra, there was no contamination. Also, the highest rate of callogenesis, somatic embryogenesis and regeneration was obtained in Shiraz and Ardebil ecotypes with TiO2 nanoparticle under the combinational use of blue and red spectra. The blue light spectrum had the greatest effect on the control of contamination using ZnO nanoparticle. The formation of embryonic cells increased in TiO2 culture medium with a concentration of 10 mg L-1 under the combinational use of blue and red lights. With increasing nanoparticle concentration and light intensity, the accumulation of free radicals and activity of polyphenol oxidase were inhibited and the nutrient uptake by growing cells increased. In contrast, the regenerated control plants turned into white mass and causing the death of embryogenic calli, and seedlings. This study, using TiO2 and ZnO nanoparticles, it was possible to present an effective and useful protocol for induction of vegetative embryo and regeneration in the shortest time in the culture medium.
Keywords: Callus induction, Free radicals, Nano particle, Optical spectra, Polyphenol oxidase enzyme
Full-Text [PDF 912 kb]   (247 Downloads)    
Type of Study: Research | Subject: Biotechnology and Tissue culture
Received: 2021/01/13 | Accepted: 2021/12/22 | Published: 2022/12/7
References
1. Abdel Wahab, D., N. Othman. and A. Hamada. 2020. Zinc Oxide Nanoparticles Induce Changes in the Antioxidant Systems and Macromolecules in the Solanum nigrum Callus. J. Bot. 60(2): 503-517.
2. Allington, G.R.H., and T.J. Valone. 2010. Reversal of desertification: the role of physical and chemical soil properties. J. Arid Environ. 74(8): 973-977. [DOI:10.1016/j.jaridenv.2009.12.005]
3. Alvarez, S.P., M.A.M. Tapia., M.E.G. Vega, E.F.H. Ardisana, J.A. C.Medina, G.L. F.Zamora. and D.V. Bustamante. 2019. Nanotechnology and Plant Tissue Culture. In Plant Nanobionics. Springer International Publishing, Cham, Switzerland. pp.333-370. [DOI:10.1007/978-3-030-12496-0_12]
4. Chakroun, A., A. Jemmali, K.B. Hamed, C. Abdelli, and P. Druart. 2007. Effet du nitrate d'ammonium sur le développement et l'activité des enzymes anti-oxydantes du fraisier (Fragaria x ananassa L.) micropropagé. Biotech. Agron. Soc. Environ. 11 (2): 89-95
5. Chandana, B.C., H.C.Kumari Nagaveni, M.S. Heena, S.K. Shashikala. and D. Lakshmana.2018. Role of plant tissue culture in micropropagation, secondary metabolites production and conservation of some endangered medicinal crops. J. Pharm. 7(3): 246-251.
6. Chutipaijit, S., and T. Sutjaritvorakul. 2018. Titanium Dioxide (TiO2) nanoparticles induced callus induction and plant regeneration of indica rice cultivars (Suphanburi1 and Suphanburi90). J. Nanomater Bios. 13(4):1003-1010.
7. Dumani, Y., S.M.M., Mortazavian, A. Izadi-Darbandi, H. Ramshini., and M. Bahmankar. 2020. The Study of effective factors in callus induction, somatic vegetative and regeneration in Paulownia ShanTong. J. For. Res. 6(2): 347-366. (In Persion)
8. Dumani, Y., S.M.M. Mortazavian, A. Izadi-Darbandi, H. Ramshini., and F. Amini. 2022. Titanium dioxide nanoparticles affect somatic embryo initiation, development, and biochemical composition in Paulownia sp Seedlings. J. Ind. Crops Prod. 176 : 1-14 [DOI:10.1016/j.indcrop.2021.114398]
9. Ewais, E.A., S.A. Desouky, and E.H. 0Elshazly. 2015. Evaluation of callus responses of Solanum nigrum L. exposed to biologically synthesized silver nanoparticles. J. Nanosci Nanotechnol. 5 (3): 45-56.
10. Fazeli-nasab, B., and Z. Fooladvand. 2016. A review on Iranian Carum copticum L. Composition and biological activities. J. Med. Plants. 12(1):1-8. [DOI:10.9734/EJMP/2016/17584]
11. Jain, S.M., and P.K. Gupta (Eds.). 2018. Step wise protocols for somatic embryogenesis of important woody plants. Springer: Cham, Switzerland. pp. 25-38. [DOI:10.1007/978-3-319-89483-6]
12. Kasemets, K., A. Ivask, H.C. Dubourguier, and A. Kahru. 2009. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. J.Toxicol In Vitro. 23(6): 1116-1122. [DOI:10.1016/j.tiv.2009.05.015]
13. Kouhi, S.M.M., M. Lahouti, A. Ganjeali, and M.H. Entezari. 2015. Comparative effects of ZnO nanoparticles, ZnO bulk particles, and Zn 2+ on Brassica napus after long-term exposure: changes in growth, biochemical compounds, antioxidant enzyme activities, and Zn bioaccumulation. J. Water Air Soil Pollut. 226(11): 364-375. [DOI:10.1007/s11270-015-2628-7]
14. Kumar, K.R., K.P. Singh, D.V.S. Raju, R. Bhatia, and S. Panwar. 2020. Maternal haploid induction in African marigold (Tagetes erecta L.) through in vitro culture of un-fertilized ovules. Plant Cell Tissue Organ Cul. 143(3):549-564. [DOI:10.1007/s11240-020-01940-0]
15. Lei, Z., S. Mingyu, W. Xiao, L. Chao, Q. Chunxiang, C. Liang, and Fashui, H. 2008. Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. J. Biol Trace Elem Res. 121(1): 69-79. [DOI:10.1007/s12011-007-8028-0]
16. Lei, Z., M.Y. Su, X. Wu, C. Liu, C.X. Qu, L. Chen, and H. FS. 2008. Interactions between manufactured nanomaterials and plants. J. Biol. Trace Elem. Res. 121: 69-79.
17. Mahendran, D., P. B. Kavi Kishor, N. Geetha, and P. Venkatachalam. 2018. Phycomolecule-coated silver nanoparticles and seaweed extracts induced high-frequency somatic embryogenesis and plant regeneration from Gloriosa superba L. J. Appl. Psychol. 30(2): 1425-1436. [DOI:10.1007/s10811-017-1293-1]
18. Mandeh, M., M. Omidi, M. Rahaie. 2012. In Vitro Influences of TiO2 Nanoparticles on Barley (Hordeum vulgare L.) Tissue Culture. J. Biol. Trace Elem. Res. 150: 376-380. [DOI:10.1007/s12011-012-9480-z]
19. Moore, M. N. 2006. Environmental risk management-The state of the art. J. Environ. 32(8): 967-976. [DOI:10.1016/j.envint.2006.06.014]
20. Nair, R., S.H. Varghese, B.G. Nair, T. Maekawa, Y. Yoshida, and D.S. Kumar. 2010. Nanoparticulate material delivery to plants. J. Plant Sci. 179(3): 154-163. [DOI:10.1016/j.plantsci.2010.04.012]
21. Sharma K.S. Dubey. 2011.Biotechnology and conservation of medicinal plants. J. Expl Sci 2:60-61
22. Soltani Howyzeh, M., S.A. Sadat Noori, J. V., Shariati, and M. Niazian. 2018. Essential oil chemotype of Iranian Ajowan (Trachyspermum ammi L.). J. Essen. Oil Bear. Plants. 21(1): 273-276. [DOI:10.1080/0972060X.2018.1433074]
23. Valizadeh, M., A., Safarnezhad, Nematzadeh, G.A., Kazemi, T.S. and H. Hamidi. 2008. Regeneration of Plantlets from Fragmented Embryo Explant of Parsi Zira (Bunium persicum Boiss). J..Seed Plant. 24(3): 389-397. (In Persion)
24. Wang, C., S.S. Li, and G.Z. Han. 2016. Commentary: plant auxin biosynthesis did not originate in charophytes. Front. J. Plant Sci. 7:158-165 [DOI:10.3389/fpls.2016.00158]
25. Yang, F., F. Hong, W. You, C. Liu, F. Gao, C. Wu, and P. Yang. 2006. Influence of nano-anatase TiO 2 on the nitrogen metabolism of growing spinach. J. Biol. Trace Elem. Res. 110(2): 179-190. [DOI:10.1385/BTER:110:2:179]
26. Zare, E., S. Pourseyedi. M. Khatami. and E. Darezereshki. 2017. Simple biosynthesis of zinc oxide nanoparticles using nature's source, and it's in vitro bio-activity. J. Mol. Struct. 1146: 96-103. [DOI:10.1016/j.molstruc.2017.05.118]
27. Abdel Wahab, D., N. Othman. and A. Hamada. 2020. Zinc Oxide Nanoparticles Induce Changes in the Antioxidant Systems and Macromolecules in the Solanum nigrum Callus. J. Bot. 60(2): 503-517.
28. Allington, G.R.H., and T.J. Valone. 2010. Reversal of desertification: the role of physical and chemical soil properties. J. Arid Environ. 74(8): 973-977. [DOI:10.1016/j.jaridenv.2009.12.005]
29. Alvarez, S.P., M.A.M. Tapia., M.E.G. Vega, E.F.H. Ardisana, J.A. C.Medina, G.L. F.Zamora. and D.V. Bustamante. 2019. Nanotechnology and Plant Tissue Culture. In Plant Nanobionics. Springer International Publishing, Cham, Switzerland. pp.333-370. [DOI:10.1007/978-3-030-12496-0_12]
30. Chakroun, A., A. Jemmali, K.B. Hamed, C. Abdelli, and P. Druart. 2007. Effet du nitrate d'ammonium sur le développement et l'activité des enzymes anti-oxydantes du fraisier (Fragaria x ananassa L.) micropropagé. Biotech. Agron. Soc. Environ. 11 (2): 89-95
31. Chandana, B.C., H.C.Kumari Nagaveni, M.S. Heena, S.K. Shashikala. and D. Lakshmana.2018. Role of plant tissue culture in micropropagation, secondary metabolites production and conservation of some endangered medicinal crops. J. Pharm. 7(3): 246-251.
32. Chutipaijit, S., and T. Sutjaritvorakul. 2018. Titanium Dioxide (TiO2) nanoparticles induced callus induction and plant regeneration of indica rice cultivars (Suphanburi1 and Suphanburi90). J. Nanomater Bios. 13(4):1003-1010.
33. Dumani, Y., S.M.M., Mortazavian, A. Izadi-Darbandi, H. Ramshini., and M. Bahmankar. 2020. The Study of effective factors in callus induction, somatic vegetative and regeneration in Paulownia ShanTong. J. For. Res. 6(2): 347-366. (In Persion)
34. Dumani, Y., S.M.M. Mortazavian, A. Izadi-Darbandi, H. Ramshini., and F. Amini. 2022. Titanium dioxide nanoparticles affect somatic embryo initiation, development, and biochemical composition in Paulownia sp Seedlings. J. Ind. Crops Prod. 176 : 1-14 [DOI:10.1016/j.indcrop.2021.114398]
35. Ewais, E.A., S.A. Desouky, and E.H. 0Elshazly. 2015. Evaluation of callus responses of Solanum nigrum L. exposed to biologically synthesized silver nanoparticles. J. Nanosci Nanotechnol. 5 (3): 45-56.
36. Fazeli-nasab, B., and Z. Fooladvand. 2016. A review on Iranian Carum copticum L. Composition and biological activities. J. Med. Plants. 12(1):1-8. [DOI:10.9734/EJMP/2016/17584]
37. Jain, S.M., and P.K. Gupta (Eds.). 2018. Step wise protocols for somatic embryogenesis of important woody plants. Springer: Cham, Switzerland. pp. 25-38. [DOI:10.1007/978-3-319-89483-6]
38. Kasemets, K., A. Ivask, H.C. Dubourguier, and A. Kahru. 2009. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. J.Toxicol In Vitro. 23(6): 1116-1122. [DOI:10.1016/j.tiv.2009.05.015]
39. Kouhi, S.M.M., M. Lahouti, A. Ganjeali, and M.H. Entezari. 2015. Comparative effects of ZnO nanoparticles, ZnO bulk particles, and Zn 2+ on Brassica napus after long-term exposure: changes in growth, biochemical compounds, antioxidant enzyme activities, and Zn bioaccumulation. J. Water Air Soil Pollut. 226(11): 364-375. [DOI:10.1007/s11270-015-2628-7]
40. Kumar, K.R., K.P. Singh, D.V.S. Raju, R. Bhatia, and S. Panwar. 2020. Maternal haploid induction in African marigold (Tagetes erecta L.) through in vitro culture of un-fertilized ovules. Plant Cell Tissue Organ Cul. 143(3):549-564. [DOI:10.1007/s11240-020-01940-0]
41. Lei, Z., S. Mingyu, W. Xiao, L. Chao, Q. Chunxiang, C. Liang, and Fashui, H. 2008. Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. J. Biol Trace Elem Res. 121(1): 69-79. [DOI:10.1007/s12011-007-8028-0]
42. Lei, Z., M.Y. Su, X. Wu, C. Liu, C.X. Qu, L. Chen, and H. FS. 2008. Interactions between manufactured nanomaterials and plants. J. Biol. Trace Elem. Res. 121: 69-79.
43. Mahendran, D., P. B. Kavi Kishor, N. Geetha, and P. Venkatachalam. 2018. Phycomolecule-coated silver nanoparticles and seaweed extracts induced high-frequency somatic embryogenesis and plant regeneration from Gloriosa superba L. J. Appl. Psychol. 30(2): 1425-1436. [DOI:10.1007/s10811-017-1293-1]
44. Mandeh, M., M. Omidi, M. Rahaie. 2012. In Vitro Influences of TiO2 Nanoparticles on Barley (Hordeum vulgare L.) Tissue Culture. J. Biol. Trace Elem. Res. 150: 376-380. [DOI:10.1007/s12011-012-9480-z]
45. Moore, M. N. 2006. Environmental risk management-The state of the art. J. Environ. 32(8): 967-976. [DOI:10.1016/j.envint.2006.06.014]
46. Nair, R., S.H. Varghese, B.G. Nair, T. Maekawa, Y. Yoshida, and D.S. Kumar. 2010. Nanoparticulate material delivery to plants. J. Plant Sci. 179(3): 154-163. [DOI:10.1016/j.plantsci.2010.04.012]
47. Sharma K.S. Dubey. 2011.Biotechnology and conservation of medicinal plants. J. Expl Sci 2:60-61
48. Soltani Howyzeh, M., S.A. Sadat Noori, J. V., Shariati, and M. Niazian. 2018. Essential oil chemotype of Iranian Ajowan (Trachyspermum ammi L.). J. Essen. Oil Bear. Plants. 21(1): 273-276. [DOI:10.1080/0972060X.2018.1433074]
49. Valizadeh, M., A., Safarnezhad, Nematzadeh, G.A., Kazemi, T.S. and H. Hamidi. 2008. Regeneration of Plantlets from Fragmented Embryo Explant of Parsi Zira (Bunium persicum Boiss). J..Seed Plant. 24(3): 389-397. (In Persion)
50. Wang, C., S.S. Li, and G.Z. Han. 2016. Commentary: plant auxin biosynthesis did not originate in charophytes. Front. J. Plant Sci. 7:158-165 [DOI:10.3389/fpls.2016.00158]
51. Yang, F., F. Hong, W. You, C. Liu, F. Gao, C. Wu, and P. Yang. 2006. Influence of nano-anatase TiO 2 on the nitrogen metabolism of growing spinach. J. Biol. Trace Elem. Res. 110(2): 179-190. [DOI:10.1385/BTER:110:2:179]
52. Zare, E., S. Pourseyedi. M. Khatami. and E. Darezereshki. 2017. Simple biosynthesis of zinc oxide nanoparticles using nature's source, and it's in vitro bio-activity. J. Mol. Struct. 1146: 96-103. [DOI:10.1016/j.molstruc.2017.05.118]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moradi N, Sadat Noori S A, Dumani Y, Amini F. Assessment of the Effect of Optical Spectra (LED) and TiO2 and ZnO Nanoparticles on Vegetative Embryogenesis and Regeneration of Some Ecotypes in Ajowan (Trachyspermum ammi L.). IJHST 2022; 23 (3) :447-462
URL: http://journal-irshs.ir/article-1-521-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 23, Issue 3 (Fall 2022) Back to browse issues page
مجله علوم و فنون باغبانی ایران Iranian Journal of Horticultural Science and Technology
Persian site map - English site map - Created in 0.06 seconds with 37 queries by YEKTAWEB 4700