1. Albacete, A.A., C. Martínez-Andújar, and F. Pérez-Alfocea. 2014. Hormonal and metabolic regulation of source-sink relations under salinity and drought: from plant survival to crop yield stability. Biotechnol. Adv. 32:12-30 [ DOI:10.1016/j.biotechadv.2013.10.005] 2. Alexieva, V., I. Sergiev, S. Mapelli, and E. Karanov. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 24: 1337-1344. [ DOI:10.1046/j.1365-3040.2001.00778.x] 3. Amiri A., A. Sirousmehr، and S. Esmaeilzadeh Bahabadi. 2016. Effect of foliar application of salicylic acid and chitosan on yield of Safflower (Carthamus tinctorius L.). J. Plant Res. 28: 712-725. (In Persian). 4. Bahadur, A., T.D. Lama, and S.N. Chaurasia. 2015. Gas exchange, chlorophyll fluorescence, biomass production, water use and yield response of tomato (Solanum lycopersicum) grown under deficit irrigation and varying nitrogen levels. Indian J. Agr. Sci. 85: 224-228. 5. Bates, L.S., R.P. Waldren, and I.D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant and soil. 39: 205-207. [ DOI:10.1007/BF00018060] 6. Çelik, Ö., A. Ayan, and Ç. Atak. 2017. Enzymatic and non-enzymatic comparison of two different industrial tomato (Solanum lycopersicum) varieties against drought stress. Bot. Stud. 58:32. [ DOI:10.1186/s40529-017-0186-6] 7. Chamnanmanoontham, N., W. Pongprayoon, R. Pichayangkura, S. Roytrakul, and S. Chadchawan. 2015. Chitosan enhances rice seedling growth via gene expression network between nucleus and chloroplast. Plant Growth Regul. 75: 101-114. [ DOI:10.1007/s10725-014-9935-7] 8. Chitarra, W., C. Pagliarani, B. Maserti, E. Lumini, I. Siciliano, P. Cascone, A. Schubert, G. Gambino, R. Balestrini, and E. Guerrieri. 2016. Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol. 171: 1009-1023. [ DOI:10.1104/pp.16.00307] 9. Conti, V., L. Mareri, C. Faleri, M. Nepi, M. Romi, G. Cai, and C. Cantini. 2019. Drought stress affects the response of Italian local tomato (Solanum lycopersicum L.) Varieties in a genotype-dependent manner. Plants. 8(9):336. [ DOI:10.3390/plants8090336] 10. Dos Reis, C.O., P.C. Magalhaes, G.A. Roniel, G.A. Lorena, M.R. Valquiria, and T.C. Diogo. 2019. Action of N-Succinyl and NO-Dicarboxymethyl chitosan derivatives on chlorophyll photosynthesis and fluorescence in drought-sensitive maize. J. Plant Growth Regul. 38: 619-630. [ DOI:10.1007/s00344-018-9877-9] 11. F. El Amerany., A. Meddich, S. Wahbi, A. Porzel, M. Taourirte, M. Rhazi, and B. Hause. 2020. Foliar application of chitosan increases tomato growth and influences mycorrhization and expression of endochitinase-encoding genes. Int. J. Mol. Sci. 21(2):535.
https://doi.org/10.3390/ijms21020535 [ DOI:10.3390/ijms21020535.] 12. Ghafari, Tadayon, M. R., and J. Razmjoo. 2018. Effect foliar of proline on some physiological indices of sugar beet (Beta vulgaris L.) to water deficit condition. Journal of Plant Process and Function. 26: 13-26. (In Persian) 13. Hadwiger, L. A. 2015. Anatomy of a nonhost disease resistance response of pea to Fusarium solani: PR gene elicitation via DNase, chitosan and chromatin alterations. Front. Plant Sci. 6: 373. [ DOI:10.3389/fpls.2015.00373] 14. Hassnain, M., I. Alam, A. Ahmad, I. Basit, N. Ullah, I. Alam, M. A. Ullah, B. M. Khalid, and M. Shair. 2020. Efficacy of chitosan on performance of tomato (Lycopersicon esculentum L.) plant under water stress condition. Pak. J. Agr. Sci. 33: 27-41. [ DOI:10.17582/journal.pjar/2020/33.1.27.41] 15. Hidangmayum A., P. Dwivedi, D. Katiyar, and A. Hemantaranjan. 2019. Application of chitosan on plant responses with special reference to abiotic stress. Physiol. Mol. Biol. Plants. 25: 313-326. [ DOI:10.1007/s12298-018-0633-1] 16. Jambunathan, N. 2010. Determination and Detection of Reactive Oxygen Species (ROS), Lipid Peroxidation, and Electrolyte Leakage in Plants. Methods Mol. Biol. 639:291-297. [ DOI:10.1007/978-1-60761-702-0_18] 17. Li, J., Y. Wang, J. Wei, Y. Pan, C. Su, and X. Zhang. 2018. A tomato proline-, lysine-, and glutamic-rich type gene SpPKE1 positively regulates drought stress tolerance. Biochem. Biophys. Res. Commun. 499: 777-782. [ DOI:10.1016/j.bbrc.2018.03.222] 18. Liang, G., J. Liu, J. Zhang, and J. Guo. 2020. Effects of drought stress on photosynthetic and physiological parameters of tomato. J. Am. Soc. Hort. Sci. 145:1-6. [ DOI:10.21273/JASHS04725-19] 19. Mirajkar, S.J., S.G. Dalvi, S.D. Ramteke, and P. Suprasanna. 2019. Foliar application of gamma radiation processed chitosan triggered distinctive biological responses in sugarcane under water deficit stress conditions. Int. J. Biol. Macromol. 139: 1212-1223. [ DOI:10.1016/j.ijbiomac.2019.08.093] 20. Nangare, D.D., Y. Singh, P.S. Kumar, and P.S. Minhas. 2016. Growth, fruit yield and quality of tomato (Lycopersicon esculentum Mill.) as affected by deficit irrigation regulated on phenological basis. Agric. Water Manag. 171: 73-79. [ DOI:10.1016/j.agwat.2016.03.016] 21. Rabêlo, V.M., P.C. Magalhães, L.A. Bressanin, D.T. Carvalho, C. Oliveira dos Reis, D. Karam, A.C. Doriguetto, M. Henrique dos Santos, P. Rodrigues dos Santos Santos Filho, and T.C. De Souza. 2019. The foliar application of a mixture of semisynthetic chitosan derivatives induces tolerance to water deficit in maize, improving the antioxidant system and increasing photosynthesis and grain yield. Sci. Rep. 9: 8164. [ DOI:10.1038/s41598-019-44649-7] 22. Rao, N.K., L. Hunashikatti, and K. Shivashankara. 2016. Physiological and Morphological Responses of Horticultural Crops to Abiotic Stresses. In: Rao N., Shivashankara K., Laxman R. (eds) Abiotic Stress Physiology of Horticultural Crops. Springer, New Delhi. [ DOI:10.1007/978-81-322-2725-0_1] 23. Sathiyabama. M., A. Gurunathan, and R. Charles. 2013. Chitosan-induced defence responses in tomato plants against early blight disease caused by Alternaria solani (Ellis and Martin) Sorauer. Arch. Phytopathol. Pflanzenschutz. 47:1963-1973. [ DOI:10.1080/03235408.2013.863497] 24. Shams Peykani, L., and M. Farzami Sepehr. 2018. Effect of chitosan on antioxidant enzyme activity, proline, and malondialdehyde content in Triticum aestivum L. and Zea mays L. under salt stress condition. Iran. J. Plant Physiol. 9: 2661-2670. 25. Sharif, R., M. Mujtaba, M. Ur Rahman, A. Shalmani, H. Ahmad, T. Anwar, D. Tianchan, and X. Wang. 2018. The Multifunctional Role of Chitosan in Horticultural Crops; A Review. Molecules. 23: 872. [ DOI:10.3390/molecules23040872] 26. Sharma, A., B. Shahzad, V. Kumar, S.K. Kohli, G.P.S. Sidhu, A.S. Bali, N. Handa, D. Kapoor, R. Bhardwaj, and B. Zheng. 2019. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules. 9: 285. http://dx.doi.org/10.3390/biom9070285 [ DOI:10.3390/biom9070285] 27. Signini, S., and S.P. Campana-Filho. 2001. Characteristics and properties of purified chitosan in the neutral, acetate and hydrochloride forms. Polymers. 11: 58-64. 28. Wang, Z.B., Y.F. Wang, J.J. Zhao, L. Ma, Y.J. Wang, X. Zhang, Y.T. Nie, L. X. Guo, L. X. Mei, and Z.Y. Zao. 2018. Effects of GeO2 on chlorophyll fluorescence and antioxidant enzymes in apple leaves under strong light. Photosynthetica, 56:1081-1092. [ DOI:10.1007/s11099-018-0807-7] 29. Yuan, X.K., Z.Q. Yang, Y.X. Li, Y.X. Liu, and W. Han. 2016. Effects of different levels of water stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato. Photosynthetica, 54: 28-39. [ DOI:10.1007/s11099-015-0122-5] 30. Zhang, X., Z. Yang, Z. Li, F. Zhang, and L. Hao. 2020. Effects of drought stress on physiology and antioxidative activity in two varieties of Cynanchum thesioides. Rev. Bras. Bot. 43: 1-10. [ DOI:10.1007/s40415-019-00573-8] 31. Zhou, R.,X. Yu, C. Ottosen, E. Rosenqvist, L. Zhao, Y. Wang, W. Yu, T. Zhao, and Z. Wu. 2017. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biol. 17:24. https://doi:10.1186/s12870-017-0974-x. [ DOI:10.1186/s12870-017-0974-x] 32. Zhou, R., L. Kong, X. Yu, C. Ottosen, T. Zhao, F. Jiang, and Z. Wu. 2019. Oxidative damage and antioxidant mechanism in tomatoes responding to drought and heat stress. Acta Physiol. Plant. 41:20. [ DOI:10.1007/s11738-019-2805-1] 33. Albacete, A.A., C. Martínez-Andújar, and F. Pérez-Alfocea. 2014. Hormonal and metabolic regulation of source-sink relations under salinity and drought: from plant survival to crop yield stability. Biotechnol. Adv. 32:12-30 [ DOI:10.1016/j.biotechadv.2013.10.005] 34. Alexieva, V., I. Sergiev, S. Mapelli, and E. Karanov. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 24: 1337-1344. [ DOI:10.1046/j.1365-3040.2001.00778.x] 35. Amiri A., A. Sirousmehr، and S. Esmaeilzadeh Bahabadi. 2016. Effect of foliar application of salicylic acid and chitosan on yield of Safflower (Carthamus tinctorius L.). J. Plant Res. 28: 712-725. (In Persian). 36. Bahadur, A., T.D. Lama, and S.N. Chaurasia. 2015. Gas exchange, chlorophyll fluorescence, biomass production, water use and yield response of tomato (Solanum lycopersicum) grown under deficit irrigation and varying nitrogen levels. Indian J. Agr. Sci. 85: 224-228. 37. Bates, L.S., R.P. Waldren, and I.D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant and soil. 39: 205-207. [ DOI:10.1007/BF00018060] 38. Çelik, Ö., A. Ayan, and Ç. Atak. 2017. Enzymatic and non-enzymatic comparison of two different industrial tomato (Solanum lycopersicum) varieties against drought stress. Bot. Stud. 58:32. [ DOI:10.1186/s40529-017-0186-6] 39. Chamnanmanoontham, N., W. Pongprayoon, R. Pichayangkura, S. Roytrakul, and S. Chadchawan. 2015. Chitosan enhances rice seedling growth via gene expression network between nucleus and chloroplast. Plant Growth Regul. 75: 101-114. [ DOI:10.1007/s10725-014-9935-7] 40. Chitarra, W., C. Pagliarani, B. Maserti, E. Lumini, I. Siciliano, P. Cascone, A. Schubert, G. Gambino, R. Balestrini, and E. Guerrieri. 2016. Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol. 171: 1009-1023. [ DOI:10.1104/pp.16.00307] 41. Conti, V., L. Mareri, C. Faleri, M. Nepi, M. Romi, G. Cai, and C. Cantini. 2019. Drought stress affects the response of Italian local tomato (Solanum lycopersicum L.) Varieties in a genotype-dependent manner. Plants. 8(9):336. [ DOI:10.3390/plants8090336] 42. Dos Reis, C.O., P.C. Magalhaes, G.A. Roniel, G.A. Lorena, M.R. Valquiria, and T.C. Diogo. 2019. Action of N-Succinyl and NO-Dicarboxymethyl chitosan derivatives on chlorophyll photosynthesis and fluorescence in drought-sensitive maize. J. Plant Growth Regul. 38: 619-630. [ DOI:10.1007/s00344-018-9877-9] 43. F. El Amerany., A. Meddich, S. Wahbi, A. Porzel, M. Taourirte, M. Rhazi, and B. Hause. 2020. Foliar application of chitosan increases tomato growth and influences mycorrhization and expression of endochitinase-encoding genes. Int. J. Mol. Sci. 21(2):535.
https://doi.org/10.3390/ijms21020535 [ DOI:10.3390/ijms21020535.] 44. Ghafari, Tadayon, M. R., and J. Razmjoo. 2018. Effect foliar of proline on some physiological indices of sugar beet (Beta vulgaris L.) to water deficit condition. Journal of Plant Process and Function. 26: 13-26. (In Persian) 45. Hadwiger, L. A. 2015. Anatomy of a nonhost disease resistance response of pea to Fusarium solani: PR gene elicitation via DNase, chitosan and chromatin alterations. Front. Plant Sci. 6: 373. [ DOI:10.3389/fpls.2015.00373] 46. Hassnain, M., I. Alam, A. Ahmad, I. Basit, N. Ullah, I. Alam, M. A. Ullah, B. M. Khalid, and M. Shair. 2020. Efficacy of chitosan on performance of tomato (Lycopersicon esculentum L.) plant under water stress condition. Pak. J. Agr. Sci. 33: 27-41. [ DOI:10.17582/journal.pjar/2020/33.1.27.41] 47. Hidangmayum A., P. Dwivedi, D. Katiyar, and A. Hemantaranjan. 2019. Application of chitosan on plant responses with special reference to abiotic stress. Physiol. Mol. Biol. Plants. 25: 313-326. [ DOI:10.1007/s12298-018-0633-1] 48. Jambunathan, N. 2010. Determination and Detection of Reactive Oxygen Species (ROS), Lipid Peroxidation, and Electrolyte Leakage in Plants. Methods Mol. Biol. 639:291-297. [ DOI:10.1007/978-1-60761-702-0_18] 49. Li, J., Y. Wang, J. Wei, Y. Pan, C. Su, and X. Zhang. 2018. A tomato proline-, lysine-, and glutamic-rich type gene SpPKE1 positively regulates drought stress tolerance. Biochem. Biophys. Res. Commun. 499: 777-782. [ DOI:10.1016/j.bbrc.2018.03.222] 50. Liang, G., J. Liu, J. Zhang, and J. Guo. 2020. Effects of drought stress on photosynthetic and physiological parameters of tomato. J. Am. Soc. Hort. Sci. 145:1-6. [ DOI:10.21273/JASHS04725-19] 51. Mirajkar, S.J., S.G. Dalvi, S.D. Ramteke, and P. Suprasanna. 2019. Foliar application of gamma radiation processed chitosan triggered distinctive biological responses in sugarcane under water deficit stress conditions. Int. J. Biol. Macromol. 139: 1212-1223. [ DOI:10.1016/j.ijbiomac.2019.08.093] 52. Nangare, D.D., Y. Singh, P.S. Kumar, and P.S. Minhas. 2016. Growth, fruit yield and quality of tomato (Lycopersicon esculentum Mill.) as affected by deficit irrigation regulated on phenological basis. Agric. Water Manag. 171: 73-79. [ DOI:10.1016/j.agwat.2016.03.016] 53. Rabêlo, V.M., P.C. Magalhães, L.A. Bressanin, D.T. Carvalho, C. Oliveira dos Reis, D. Karam, A.C. Doriguetto, M. Henrique dos Santos, P. Rodrigues dos Santos Santos Filho, and T.C. De Souza. 2019. The foliar application of a mixture of semisynthetic chitosan derivatives induces tolerance to water deficit in maize, improving the antioxidant system and increasing photosynthesis and grain yield. Sci. Rep. 9: 8164. [ DOI:10.1038/s41598-019-44649-7] 54. Rao, N.K., L. Hunashikatti, and K. Shivashankara. 2016. Physiological and Morphological Responses of Horticultural Crops to Abiotic Stresses. In: Rao N., Shivashankara K., Laxman R. (eds) Abiotic Stress Physiology of Horticultural Crops. Springer, New Delhi. [ DOI:10.1007/978-81-322-2725-0_1] 55. Sathiyabama. M., A. Gurunathan, and R. Charles. 2013. Chitosan-induced defence responses in tomato plants against early blight disease caused by Alternaria solani (Ellis and Martin) Sorauer. Arch. Phytopathol. Pflanzenschutz. 47:1963-1973. [ DOI:10.1080/03235408.2013.863497] 56. Shams Peykani, L., and M. Farzami Sepehr. 2018. Effect of chitosan on antioxidant enzyme activity, proline, and malondialdehyde content in Triticum aestivum L. and Zea mays L. under salt stress condition. Iran. J. Plant Physiol. 9: 2661-2670. 57. Sharif, R., M. Mujtaba, M. Ur Rahman, A. Shalmani, H. Ahmad, T. Anwar, D. Tianchan, and X. Wang. 2018. The Multifunctional Role of Chitosan in Horticultural Crops; A Review. Molecules. 23: 872. [ DOI:10.3390/molecules23040872] 58. Sharma, A., B. Shahzad, V. Kumar, S.K. Kohli, G.P.S. Sidhu, A.S. Bali, N. Handa, D. Kapoor, R. Bhardwaj, and B. Zheng. 2019. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules. 9: 285. http://dx.doi.org/10.3390/biom9070285 [ DOI:10.3390/biom9070285] 59. Signini, S., and S.P. Campana-Filho. 2001. Characteristics and properties of purified chitosan in the neutral, acetate and hydrochloride forms. Polymers. 11: 58-64. 60. Wang, Z.B., Y.F. Wang, J.J. Zhao, L. Ma, Y.J. Wang, X. Zhang, Y.T. Nie, L. X. Guo, L. X. Mei, and Z.Y. Zao. 2018. Effects of GeO2 on chlorophyll fluorescence and antioxidant enzymes in apple leaves under strong light. Photosynthetica, 56:1081-1092. [ DOI:10.1007/s11099-018-0807-7] 61. Yuan, X.K., Z.Q. Yang, Y.X. Li, Y.X. Liu, and W. Han. 2016. Effects of different levels of water stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato. Photosynthetica, 54: 28-39. [ DOI:10.1007/s11099-015-0122-5] 62. Zhang, X., Z. Yang, Z. Li, F. Zhang, and L. Hao. 2020. Effects of drought stress on physiology and antioxidative activity in two varieties of Cynanchum thesioides. Rev. Bras. Bot. 43: 1-10. [ DOI:10.1007/s40415-019-00573-8] 63. Zhou, R.,X. Yu, C. Ottosen, E. Rosenqvist, L. Zhao, Y. Wang, W. Yu, T. Zhao, and Z. Wu. 2017. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biol. 17:24. https://doi:10.1186/s12870-017-0974-x. [ DOI:10.1186/s12870-017-0974-x] 64. Zhou, R., L. Kong, X. Yu, C. Ottosen, T. Zhao, F. Jiang, and Z. Wu. 2019. Oxidative damage and antioxidant mechanism in tomatoes responding to drought and heat stress. Acta Physiol. Plant. 41:20. [ DOI:10.1007/s11738-019-2805-1]
|