[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 23, Issue 3 (Fall 2022) ::
IJHST 2022, 23(3): 425-436 Back to browse issues page
Effect of Foliar Application of Some Bioregulators on Biochemical, Vegetative Characteristics and Fruit Yield of Tomato (Lycopersicon esculentum Mill.) Under Drought Stress Conditions
Leila Jafari , Mohammadreza Shamekh , Farzin Abdollahi
University of Hormozgan
Abstract:   (755 Views)
Recently, the use bioregulators to ameliorate the effects of environmental stresses on agricultural products has been considered. This split plot experiment was conducted as a randomized complete block design to investigate the moderating effect of some bioregulators on vegetative, biochemical and yield characteristics of greenhouse tomatoes under drought stress in the research greenhouse of University of Hormozgan. Experimental factors were three drought stress levels as the main factor, were include full irrigation as control, moderate and severe drought stress, respectively, irrigation of plants based on providing 100, 75 and 50% readily available water, and foliar application of 0.5 g per plant of biological compounds (the first time one day before applying drought stress and the second time before flowering begins) as a sub-factor including control (without the use of compounds), proline, chitosan and N-Succinyl and N, O dicarboxymethylate chitosan (NSC and NOC, respectively). Application of bioregulators at each water stress level increased the of proline content and catalase and peroxidase enzymes activity in comparison with the control, which in most cases the highest increase in enzyme activity related to NSC. Chitosan derivatives, on the other hand, were able to reduce the amount of malondialdehyde (MDA) and hydrogen peroxide in tomato leaves. Among the biological compounds, NSC and chitosan had the greatest improving effect on the fruit yield via increasing the number and diameter of fruit. So that foliar application with NSC increased fruit yield in control, moderate and severe water stress by 5.33, 17.91 and 33.24%, respectively. Therefore, according to these results, under deficit irrigation conditions, chitosan and its derivatives can reduce the effects of drought stress on tomatoes more efficiently than proline.
Keywords: Chitosan derivatives, Fruit yield, Tomato, Water stress
Full-Text [PDF 430 kb]   (218 Downloads)    
Type of Study: Research | Subject: Environmental stresses
Received: 2021/07/17 | Accepted: 2021/12/22 | Published: 2022/11/28
References
1. Albacete, A.A., C. Martínez-Andújar, and F. Pérez-Alfocea. 2014. Hormonal and metabolic regulation of source-sink relations under salinity and drought: from plant survival to crop yield stability. Biotechnol. Adv. 32:12-30 [DOI:10.1016/j.biotechadv.2013.10.005]
2. Alexieva, V., I. Sergiev, S. Mapelli, and E. Karanov. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 24: 1337-1344. [DOI:10.1046/j.1365-3040.2001.00778.x]
3. Amiri A., A. Sirousmehr، and S. Esmaeilzadeh Bahabadi. 2016. Effect of foliar application of salicylic acid and chitosan on yield of Safflower (Carthamus tinctorius L.). J. Plant Res. 28: 712-725. (In Persian).
4. Bahadur, A., T.D. Lama, and S.N. Chaurasia. 2015. Gas exchange, chlorophyll fluorescence, biomass production, water use and yield response of tomato (Solanum lycopersicum) grown under deficit irrigation and varying nitrogen levels. Indian J. Agr. Sci. 85: 224-228.
5. Bates, L.S., R.P. Waldren, and I.D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant and soil. 39: 205-207. [DOI:10.1007/BF00018060]
6. Çelik, Ö., A. Ayan, and Ç. Atak. 2017. Enzymatic and non-enzymatic comparison of two different industrial tomato (Solanum lycopersicum) varieties against drought stress. Bot. Stud. 58:32. [DOI:10.1186/s40529-017-0186-6]
7. Chamnanmanoontham, N., W. Pongprayoon, R. Pichayangkura, S. Roytrakul, and S. Chadchawan. 2015. Chitosan enhances rice seedling growth via gene expression network between nucleus and chloroplast. Plant Growth Regul. 75: 101-114. [DOI:10.1007/s10725-014-9935-7]
8. Chitarra, W., C. Pagliarani, B. Maserti, E. Lumini, I. Siciliano, P. Cascone, A. Schubert, G. Gambino, R. Balestrini, and E. Guerrieri. 2016. Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol. 171: 1009-1023. [DOI:10.1104/pp.16.00307]
9. Conti, V., L. Mareri, C. Faleri, M. Nepi, M. Romi, G. Cai, and C. Cantini. 2019. Drought stress affects the response of Italian local tomato (Solanum lycopersicum L.) Varieties in a genotype-dependent manner. Plants. 8(9):336. [DOI:10.3390/plants8090336]
10. Dos Reis, C.O., P.C. Magalhaes, G.A. Roniel, G.A. Lorena, M.R. Valquiria, and T.C. Diogo. 2019. Action of N-Succinyl and NO-Dicarboxymethyl chitosan derivatives on chlorophyll photosynthesis and fluorescence in drought-sensitive maize. J. Plant Growth Regul. 38: 619-630. [DOI:10.1007/s00344-018-9877-9]
11. F. El Amerany., A. Meddich, S. Wahbi, A. Porzel, M. Taourirte, M. Rhazi, and B. Hause. 2020. Foliar application of chitosan increases tomato growth and influences mycorrhization and expression of endochitinase-encoding genes. Int. J. Mol. Sci. 21(2):535. https://doi.org/10.3390/ijms21020535 [DOI:10.3390/ijms21020535.]
12. Ghafari, Tadayon, M. R., and J. Razmjoo. 2018. Effect foliar of proline on some physiological indices of sugar beet (Beta vulgaris L.) to water deficit condition. Journal of Plant Process and Function. 26: 13-26. (In Persian)
13. Hadwiger, L. A. 2015. Anatomy of a nonhost disease resistance response of pea to Fusarium solani: PR gene elicitation via DNase, chitosan and chromatin alterations. Front. Plant Sci. 6: 373. [DOI:10.3389/fpls.2015.00373]
14. Hassnain, M., I. Alam, A. Ahmad, I. Basit, N. Ullah, I. Alam, M. A. Ullah, B. M. Khalid, and M. Shair. 2020. Efficacy of chitosan on performance of tomato (Lycopersicon esculentum L.) plant under water stress condition. Pak. J. Agr. Sci. 33: 27-41. [DOI:10.17582/journal.pjar/2020/33.1.27.41]
15. Hidangmayum A., P. Dwivedi, D. Katiyar, and A. Hemantaranjan. 2019. Application of chitosan on plant responses with special reference to abiotic stress. Physiol. Mol. Biol. Plants. 25: 313-326. [DOI:10.1007/s12298-018-0633-1]
16. Jambunathan, N. 2010. Determination and Detection of Reactive Oxygen Species (ROS), Lipid Peroxidation, and Electrolyte Leakage in Plants. Methods Mol. Biol. 639:291-297. [DOI:10.1007/978-1-60761-702-0_18]
17. Li, J., Y. Wang, J. Wei, Y. Pan, C. Su, and X. Zhang. 2018. A tomato proline-, lysine-, and glutamic-rich type gene SpPKE1 positively regulates drought stress tolerance. Biochem. Biophys. Res. Commun. 499: 777-782. [DOI:10.1016/j.bbrc.2018.03.222]
18. Liang, G., J. Liu, J. Zhang, and J. Guo. 2020. Effects of drought stress on photosynthetic and physiological parameters of tomato. J. Am. Soc. Hort. Sci. 145:1-6. [DOI:10.21273/JASHS04725-19]
19. Mirajkar, S.J., S.G. Dalvi, S.D. Ramteke, and P. Suprasanna. 2019. Foliar application of gamma radiation processed chitosan triggered distinctive biological responses in sugarcane under water deficit stress conditions. Int. J. Biol. Macromol. 139: 1212-1223. [DOI:10.1016/j.ijbiomac.2019.08.093]
20. Nangare, D.D., Y. Singh, P.S. Kumar, and P.S. Minhas. 2016. Growth, fruit yield and quality of tomato (Lycopersicon esculentum Mill.) as affected by deficit irrigation regulated on phenological basis. Agric. Water Manag. 171: 73-79. [DOI:10.1016/j.agwat.2016.03.016]
21. Rabêlo, V.M., P.C. Magalhães, L.A. Bressanin, D.T. Carvalho, C. Oliveira dos Reis, D. Karam, A.C. Doriguetto, M. Henrique dos Santos, P. Rodrigues dos Santos Santos Filho, and T.C. De Souza. 2019. The foliar application of a mixture of semisynthetic chitosan derivatives induces tolerance to water deficit in maize, improving the antioxidant system and increasing photosynthesis and grain yield. Sci. Rep. 9: 8164. [DOI:10.1038/s41598-019-44649-7]
22. Rao, N.K., L. Hunashikatti, and K. Shivashankara. 2016. Physiological and Morphological Responses of Horticultural Crops to Abiotic Stresses. In: Rao N., Shivashankara K., Laxman R. (eds) Abiotic Stress Physiology of Horticultural Crops. Springer, New Delhi. [DOI:10.1007/978-81-322-2725-0_1]
23. Sathiyabama. M., A. Gurunathan, and R. Charles. 2013. Chitosan-induced defence responses in tomato plants against early blight disease caused by Alternaria solani (Ellis and Martin) Sorauer. Arch. Phytopathol. Pflanzenschutz. 47:1963-1973. [DOI:10.1080/03235408.2013.863497]
24. Shams Peykani, L., and M. Farzami Sepehr. 2018. Effect of chitosan on antioxidant enzyme activity, proline, and malondialdehyde content in Triticum aestivum L. and Zea mays L. under salt stress condition. Iran. J. Plant Physiol. 9: 2661-2670.
25. Sharif, R., M. Mujtaba, M. Ur Rahman, A. Shalmani, H. Ahmad, T. Anwar, D. Tianchan, and X. Wang. 2018. The Multifunctional Role of Chitosan in Horticultural Crops; A Review. Molecules. 23: 872. [DOI:10.3390/molecules23040872]
26. Sharma, A., B. Shahzad, V. Kumar, S.K. Kohli, G.P.S. Sidhu, A.S. Bali, N. Handa, D. Kapoor, R. Bhardwaj, and B. Zheng. 2019. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules. 9: 285. http://dx.doi.org/10.3390/biom9070285 [DOI:10.3390/biom9070285]
27. Signini, S., and S.P. Campana-Filho. 2001. Characteristics and properties of purified chitosan in the neutral, acetate and hydrochloride forms. Polymers. 11: 58-64.
28. Wang, Z.B., Y.F. Wang, J.J. Zhao, L. Ma, Y.J. Wang, X. Zhang, Y.T. Nie, L. X. Guo, L. X. Mei, and Z.Y. Zao. 2018. Effects of GeO2 on chlorophyll fluorescence and antioxidant enzymes in apple leaves under strong light. Photosynthetica, 56:1081-1092. [DOI:10.1007/s11099-018-0807-7]
29. Yuan, X.K., Z.Q. Yang, Y.X. Li, Y.X. Liu, and W. Han. 2016. Effects of different levels of water stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato. Photosynthetica, 54: 28-39. [DOI:10.1007/s11099-015-0122-5]
30. Zhang, X., Z. Yang, Z. Li, F. Zhang, and L. Hao. 2020. Effects of drought stress on physiology and antioxidative activity in two varieties of Cynanchum thesioides. Rev. Bras. Bot. 43: 1-10. [DOI:10.1007/s40415-019-00573-8]
31. Zhou, R.,X. Yu, C. Ottosen, E. Rosenqvist, L. Zhao, Y. Wang, W. Yu, T. Zhao, and Z. Wu. 2017. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biol. 17:24. https://doi:10.1186/s12870-017-0974-x. [DOI:10.1186/s12870-017-0974-x]
32. Zhou, R., L. Kong, X. Yu, C. Ottosen, T. Zhao, F. Jiang, and Z. Wu. 2019. Oxidative damage and antioxidant mechanism in tomatoes responding to drought and heat stress. Acta Physiol. Plant. 41:20. [DOI:10.1007/s11738-019-2805-1]
33. Albacete, A.A., C. Martínez-Andújar, and F. Pérez-Alfocea. 2014. Hormonal and metabolic regulation of source-sink relations under salinity and drought: from plant survival to crop yield stability. Biotechnol. Adv. 32:12-30 [DOI:10.1016/j.biotechadv.2013.10.005]
34. Alexieva, V., I. Sergiev, S. Mapelli, and E. Karanov. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 24: 1337-1344. [DOI:10.1046/j.1365-3040.2001.00778.x]
35. Amiri A., A. Sirousmehr، and S. Esmaeilzadeh Bahabadi. 2016. Effect of foliar application of salicylic acid and chitosan on yield of Safflower (Carthamus tinctorius L.). J. Plant Res. 28: 712-725. (In Persian).
36. Bahadur, A., T.D. Lama, and S.N. Chaurasia. 2015. Gas exchange, chlorophyll fluorescence, biomass production, water use and yield response of tomato (Solanum lycopersicum) grown under deficit irrigation and varying nitrogen levels. Indian J. Agr. Sci. 85: 224-228.
37. Bates, L.S., R.P. Waldren, and I.D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant and soil. 39: 205-207. [DOI:10.1007/BF00018060]
38. Çelik, Ö., A. Ayan, and Ç. Atak. 2017. Enzymatic and non-enzymatic comparison of two different industrial tomato (Solanum lycopersicum) varieties against drought stress. Bot. Stud. 58:32. [DOI:10.1186/s40529-017-0186-6]
39. Chamnanmanoontham, N., W. Pongprayoon, R. Pichayangkura, S. Roytrakul, and S. Chadchawan. 2015. Chitosan enhances rice seedling growth via gene expression network between nucleus and chloroplast. Plant Growth Regul. 75: 101-114. [DOI:10.1007/s10725-014-9935-7]
40. Chitarra, W., C. Pagliarani, B. Maserti, E. Lumini, I. Siciliano, P. Cascone, A. Schubert, G. Gambino, R. Balestrini, and E. Guerrieri. 2016. Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol. 171: 1009-1023. [DOI:10.1104/pp.16.00307]
41. Conti, V., L. Mareri, C. Faleri, M. Nepi, M. Romi, G. Cai, and C. Cantini. 2019. Drought stress affects the response of Italian local tomato (Solanum lycopersicum L.) Varieties in a genotype-dependent manner. Plants. 8(9):336. [DOI:10.3390/plants8090336]
42. Dos Reis, C.O., P.C. Magalhaes, G.A. Roniel, G.A. Lorena, M.R. Valquiria, and T.C. Diogo. 2019. Action of N-Succinyl and NO-Dicarboxymethyl chitosan derivatives on chlorophyll photosynthesis and fluorescence in drought-sensitive maize. J. Plant Growth Regul. 38: 619-630. [DOI:10.1007/s00344-018-9877-9]
43. F. El Amerany., A. Meddich, S. Wahbi, A. Porzel, M. Taourirte, M. Rhazi, and B. Hause. 2020. Foliar application of chitosan increases tomato growth and influences mycorrhization and expression of endochitinase-encoding genes. Int. J. Mol. Sci. 21(2):535. https://doi.org/10.3390/ijms21020535 [DOI:10.3390/ijms21020535.]
44. Ghafari, Tadayon, M. R., and J. Razmjoo. 2018. Effect foliar of proline on some physiological indices of sugar beet (Beta vulgaris L.) to water deficit condition. Journal of Plant Process and Function. 26: 13-26. (In Persian)
45. Hadwiger, L. A. 2015. Anatomy of a nonhost disease resistance response of pea to Fusarium solani: PR gene elicitation via DNase, chitosan and chromatin alterations. Front. Plant Sci. 6: 373. [DOI:10.3389/fpls.2015.00373]
46. Hassnain, M., I. Alam, A. Ahmad, I. Basit, N. Ullah, I. Alam, M. A. Ullah, B. M. Khalid, and M. Shair. 2020. Efficacy of chitosan on performance of tomato (Lycopersicon esculentum L.) plant under water stress condition. Pak. J. Agr. Sci. 33: 27-41. [DOI:10.17582/journal.pjar/2020/33.1.27.41]
47. Hidangmayum A., P. Dwivedi, D. Katiyar, and A. Hemantaranjan. 2019. Application of chitosan on plant responses with special reference to abiotic stress. Physiol. Mol. Biol. Plants. 25: 313-326. [DOI:10.1007/s12298-018-0633-1]
48. Jambunathan, N. 2010. Determination and Detection of Reactive Oxygen Species (ROS), Lipid Peroxidation, and Electrolyte Leakage in Plants. Methods Mol. Biol. 639:291-297. [DOI:10.1007/978-1-60761-702-0_18]
49. Li, J., Y. Wang, J. Wei, Y. Pan, C. Su, and X. Zhang. 2018. A tomato proline-, lysine-, and glutamic-rich type gene SpPKE1 positively regulates drought stress tolerance. Biochem. Biophys. Res. Commun. 499: 777-782. [DOI:10.1016/j.bbrc.2018.03.222]
50. Liang, G., J. Liu, J. Zhang, and J. Guo. 2020. Effects of drought stress on photosynthetic and physiological parameters of tomato. J. Am. Soc. Hort. Sci. 145:1-6. [DOI:10.21273/JASHS04725-19]
51. Mirajkar, S.J., S.G. Dalvi, S.D. Ramteke, and P. Suprasanna. 2019. Foliar application of gamma radiation processed chitosan triggered distinctive biological responses in sugarcane under water deficit stress conditions. Int. J. Biol. Macromol. 139: 1212-1223. [DOI:10.1016/j.ijbiomac.2019.08.093]
52. Nangare, D.D., Y. Singh, P.S. Kumar, and P.S. Minhas. 2016. Growth, fruit yield and quality of tomato (Lycopersicon esculentum Mill.) as affected by deficit irrigation regulated on phenological basis. Agric. Water Manag. 171: 73-79. [DOI:10.1016/j.agwat.2016.03.016]
53. Rabêlo, V.M., P.C. Magalhães, L.A. Bressanin, D.T. Carvalho, C. Oliveira dos Reis, D. Karam, A.C. Doriguetto, M. Henrique dos Santos, P. Rodrigues dos Santos Santos Filho, and T.C. De Souza. 2019. The foliar application of a mixture of semisynthetic chitosan derivatives induces tolerance to water deficit in maize, improving the antioxidant system and increasing photosynthesis and grain yield. Sci. Rep. 9: 8164. [DOI:10.1038/s41598-019-44649-7]
54. Rao, N.K., L. Hunashikatti, and K. Shivashankara. 2016. Physiological and Morphological Responses of Horticultural Crops to Abiotic Stresses. In: Rao N., Shivashankara K., Laxman R. (eds) Abiotic Stress Physiology of Horticultural Crops. Springer, New Delhi. [DOI:10.1007/978-81-322-2725-0_1]
55. Sathiyabama. M., A. Gurunathan, and R. Charles. 2013. Chitosan-induced defence responses in tomato plants against early blight disease caused by Alternaria solani (Ellis and Martin) Sorauer. Arch. Phytopathol. Pflanzenschutz. 47:1963-1973. [DOI:10.1080/03235408.2013.863497]
56. Shams Peykani, L., and M. Farzami Sepehr. 2018. Effect of chitosan on antioxidant enzyme activity, proline, and malondialdehyde content in Triticum aestivum L. and Zea mays L. under salt stress condition. Iran. J. Plant Physiol. 9: 2661-2670.
57. Sharif, R., M. Mujtaba, M. Ur Rahman, A. Shalmani, H. Ahmad, T. Anwar, D. Tianchan, and X. Wang. 2018. The Multifunctional Role of Chitosan in Horticultural Crops; A Review. Molecules. 23: 872. [DOI:10.3390/molecules23040872]
58. Sharma, A., B. Shahzad, V. Kumar, S.K. Kohli, G.P.S. Sidhu, A.S. Bali, N. Handa, D. Kapoor, R. Bhardwaj, and B. Zheng. 2019. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules. 9: 285. http://dx.doi.org/10.3390/biom9070285 [DOI:10.3390/biom9070285]
59. Signini, S., and S.P. Campana-Filho. 2001. Characteristics and properties of purified chitosan in the neutral, acetate and hydrochloride forms. Polymers. 11: 58-64.
60. Wang, Z.B., Y.F. Wang, J.J. Zhao, L. Ma, Y.J. Wang, X. Zhang, Y.T. Nie, L. X. Guo, L. X. Mei, and Z.Y. Zao. 2018. Effects of GeO2 on chlorophyll fluorescence and antioxidant enzymes in apple leaves under strong light. Photosynthetica, 56:1081-1092. [DOI:10.1007/s11099-018-0807-7]
61. Yuan, X.K., Z.Q. Yang, Y.X. Li, Y.X. Liu, and W. Han. 2016. Effects of different levels of water stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato. Photosynthetica, 54: 28-39. [DOI:10.1007/s11099-015-0122-5]
62. Zhang, X., Z. Yang, Z. Li, F. Zhang, and L. Hao. 2020. Effects of drought stress on physiology and antioxidative activity in two varieties of Cynanchum thesioides. Rev. Bras. Bot. 43: 1-10. [DOI:10.1007/s40415-019-00573-8]
63. Zhou, R.,X. Yu, C. Ottosen, E. Rosenqvist, L. Zhao, Y. Wang, W. Yu, T. Zhao, and Z. Wu. 2017. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biol. 17:24. https://doi:10.1186/s12870-017-0974-x. [DOI:10.1186/s12870-017-0974-x]
64. Zhou, R., L. Kong, X. Yu, C. Ottosen, T. Zhao, F. Jiang, and Z. Wu. 2019. Oxidative damage and antioxidant mechanism in tomatoes responding to drought and heat stress. Acta Physiol. Plant. 41:20. [DOI:10.1007/s11738-019-2805-1]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jafari L, Shamekh M, Abdollahi F. Effect of Foliar Application of Some Bioregulators on Biochemical, Vegetative Characteristics and Fruit Yield of Tomato (Lycopersicon esculentum Mill.) Under Drought Stress Conditions. IJHST 2022; 23 (3) :425-436
URL: http://journal-irshs.ir/article-1-562-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 23, Issue 3 (Fall 2022) Back to browse issues page
مجله علوم و فنون باغبانی ایران Iranian Journal of Horticultural Science and Technology
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4660