[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 23, Issue 3 (Fall 2022) ::
IJHST 2022, 23(3): 463-472 Back to browse issues page
The Impact of High Temperature Stress on the Activity of Some Antioxidant Enzymes and the Expression Pattern of Relevant Genes in Two Olive Cultivars
Ali Soleimani , Sepideh Ghanbarnejad , Ebrahim Dastkar , Ahmad Ajani
Abstract:   (863 Views)
Referring to the alleviating role of antioxidant enzymes in various abiotic stresses, the impact of high temperature (heat) stress on the activity of some antioxidant enzymes as well as their gene expression patterns were evaluated in one-year-old olive cultivars “Zard” and “Direh”. For this, potted olive seedlings were transferred to the artificial growth chamber and exposed to three different temperature regimes including 32°C (before-stress), 45°C (during-stress) and 36°C (after-stress) through a completely randomized factorial design. Based on the results, cumulative shoot growth (%) in “Zard”, and proline accumulation in “Direh” were dominant in response to the heat stress. The activity of peroxidase (POD) and superoxide dismutase (SOD) enzymes increased by high temperature stress in both cultivars. In after-stress stage, the activity of ascorbate oxidase (APX) enzyme was soared just in “Zard” in comparison with during-stress stage. The patterns of expression of POD and SOD coding genes were in coordinate with their relevant enzymes activities, though the expression level in cultivar “Direh” was about two times more than in that of “Zard”. With compared to the before-stress stage, the expression of APX gene(s) was down regulated at both during-stress and after-stress stages. Generally, olive cultivars “Zard” showed fewer fluctuations in terms of the studied activities of the antioxidant enzymes and their relevant genes expression patterns. Also, cultivar “Zard” had relatively quick recovery ability from heat stress based on the analyzed traits.
Keywords: Antioxidant enzymes, Gene expression, Heat stress, Olive (Olea europaea L.)
Full-Text [PDF 550 kb]   (248 Downloads)    
Type of Study: Research | Subject: Pomology
Received: 2020/12/5 | Accepted: 2022/02/12 | Published: 2022/12/10
References
1. Alexieva, V., I. Sergei, S. Mapelli and E. Karanov. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 24: 1337-1344. [DOI:10.1046/j.1365-3040.2001.00778.x]
2. Apel, K. and H. Hirt. 2004. Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu. Rev. Plant Biol. 55: 373-399. [DOI:10.1146/annurev.arplant.55.031903.141701]
3. Ara, N., K. Nakkanong, W. Lv, J. Yang, Z. Hu and M. Zh. 2013. Antioxidant enzymatic activities and gene expression associated with heat tolerance in the stems and roots of two cucurbit speices (Cucurbita maxima and Cucurbita moschata) and their interspecific inbred line 'Maxchata'. Int. J. Mol. Sci.14: 24008-24028. [DOI:10.3390/ijms141224008]
4. Arzani, K. and I. Arji. 2000. The effect of water stress and deficit irrigation on young potted olive cv. 'Local-Roghani Roodbar. Acta Hort. 537: 879-85. [DOI:10.17660/ActaHortic.2000.537.106]
5. Neto, A.D., J.T. Prico, J. Eneas-Filho, C.E. Braga de Abreu and E. Gomes-Filho. 2006. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ. Exp. Bot. 56: 235-241. [DOI:10.1016/j.envexpbot.2005.01.008]
6. Bates, L.S., R.P. Waldern and I.D. Tear. 1973. Rapid determination of proline for water stress studies. Plant Soil. 39: 205-208. [DOI:10.1007/BF00018060]
7. Binert, G.P., A.B. Moller, K.A., Kristiansen, A. Schulz, I.M. Moller, J.K. Schjoerring and T.P. Jahn. 2007. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 282: 1183-1192. [DOI:10.1074/jbc.M603761200]
8. Bita, C. and T. Gerates. 2013. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 4: 1-18. [DOI:10.3389/fpls.2013.00273]
9. Blokhina, O., E. Virolainen and K.V. Fagerstedt. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91: 179-194. [DOI:10.1093/aob/mcf118]
10. Chance, B. and A.C. Maehly. 1955. Assay of catalases and peroxidases. Meth. Enzymol. 11: 764-755. [DOI:10.1016/S0076-6879(55)02300-8]
11. Cirilli, M., G. Caruso, C. Gennai, S. Urban, E. Frioni, M. Ruzzi, M. Servili, R. Gucci, E. Poerio and R. Muleo. 2017. The role of polyphenoloxidase, peroxidase and β- Glucosidase in phenolics accumulation in Olea europaea L. fruits under different water regimes. Front. Plant Sci. 8: 1-13. [DOI:10.3389/fpls.2017.00717]
12. Cui, L., J. Li, Y. Fan, S. Xu and Z. Zhang. 2006. High temperature effects on photosynthesis, PSII functionally and antioxidant activity of two Festuca arundinacea cultivars with different heat susceptibility. Bot. Studi. 47: 61-69.
13. Filiz, E., I.I. Ozyigit, I.A. Saracoglu, E.M. Uras, U. Sen and B. Yalcin. 2019. Abiotic stress-induced regulation of antioxidant genes in different Arabidopsis ecotypes: microarray data evaluation. Biotechnol. Equip. 33: 128-143. [DOI:10.1080/13102818.2018.1556120]
14. Gholami, R. and M.S. Zahedi. 2019. Identifying superior drought-tolerant olive genotypes and their biochemical and some physiological responses to various irrigation levels. J. Plant Nut. 42: 2057-2069. [DOI:10.1080/01904167.2019.1648672]
15. Gratao, P.L., A. Polle, P.J. Lea and R.A. Azvedo. 2005. Making the life of heavy metal-stressed plants a little easier. Funct. Plant Biol. 32: 481-494. [DOI:10.1071/FP05016]
16. Grisafi, F., E. Bonafede, F.F. Vecchia and N. Rascio. 2004. Some morphological, anatomical, physiological responses of different olive cultivars to high temperatures and drought stress. Acta Bot. Gallica. 151: 241- 253. [DOI:10.1080/12538078.2004.10515427]
17. Hameed, A., M. Goher and N. Iqbal. 2012. Heat stress-induced cell death, changes in antioxidants, lipid peroxidation and protease activity in wheat leaves. J. Plant Growth Regul. 31: 283-291. [DOI:10.1007/s00344-011-9238-4]
18. Hatfield, J.L. and J.H. Prueger. 2015. Temperature extremes: effect on plant growth and development. Weather Clim. Extrem. 10: 4-10. [DOI:10.1016/j.wace.2015.08.001]
19. Haworth, M., G. Marino, C. Brunetti, D. Killi, A. Del Carlo and M. Centritto. 2018. The impact of heat stress and water deficit on the photosynthetic and stomatal physiology of olive (Olea europaea L) - a case study of the 2017 heat wave. Plants. 7: 1-13. [DOI:10.3390/plants7040076]
20. Fields, B.C., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi and P.M. Midgley. 2012. A special report of working groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 582p.
21. Liu, D.F., D. Zhang, G. Liu, S. Hussain and Y.W. Teng. 2013. Influence of heat stress on leaf ultrastructure, photosynthetic performance, and ascorbate peroxidase gene expression of two pear cultivars (Pyrus pyrifolia). J. Zhejiang Univ. Sci. B (Biomed & Biotechnol). 14: 1070-1083. [DOI:10.1631/jzus.B1300094]
22. Ma, Y.H., F.W. Ma, J.K. Zhang, M.J. Li, Y.H. Wang and D. Liang. 2008. Effects of high temperature and gene expression of enzymes involved in ascorbate-glutathion cycle in apple leaves. Plant Sci. 175: 761-766. [DOI:10.1016/j.plantsci.2008.07.010]
23. Mancuso, S. and E. Azarello. 2002. Heat tolerance in olive. Adv. Hort. Sci. 16: 125-130.
24. Nakano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867-880.
25. Mohammadi, H. and A.A. Zeinanloo. 2008. Modeling the thermal adapability of the olive (Olea europaea L.). in Iran. Phys. Geogr. Res. 64: 37-51 (In Persian)
26. Rivero, M.R., M.J. Ruiz, C.P. Garcia, R.L. Lopez-Lefebre, E. Sanchez and L. Romero. 2001. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 160: 315-321. [DOI:10.1016/S0168-9452(00)00395-2]
27. Sairam, R.K., P.S. Deshmukh and D.C. Saxena. 1998. Role of antioxidant systems in wheat genotype tolerance to water stress. Biol. Plant. 41: 387-394. [DOI:10.1023/A:1001898310321]
28. Sharma, P., A.B. Jha, R.S. Dubey and M. Pessarakli. 2012. Reactive oxygen species, oxidative damage and antioxidative defence mechanisms in plants under stressful conditions. J. Bot. 2012: 1-26. [DOI:10.1002/9781118482469.ch4]
29. Smirnoff, N. 1996. The function and metabolism of ascorbic acid in plants. Ann. Bot. 78: 661-669. [DOI:10.1006/anbo.1996.0175]
30. Sofo, A., B. Dichio, C. Xiloyannis and A. Msia. 2005. Antioxidant defences in olive trees during drought stress: changes in activity of some antioxidant enzymes. Funct. Plant Biol. 32: 45-53. [DOI:10.1071/FP04003]
31. Song, Y., Q. Chen, D. Ci, X. Shao and D. Zhang. 2014. Effects of high temperature on photosynthesis and related gene expression in poplar. Plant Biol. 14: 1-20. [DOI:10.1186/1471-2229-14-111]
32. Sreenivasulu, N., K. Ramanjulu, H.S. Ramachandra-Kini, H. Shekar-Shetty, H.S. Savithri and C. Sudhakar. 1999. Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance. Plant Sci. 141: 1-9. [DOI:10.1016/S0168-9452(98)00204-0]
33. Van Ruyskensvelde, F.B. and K. Van Der Kelen. 2018. Post-transcriptional regulation of the oxidative stress response in plants. Free Radic. Biol. Med. 122: 181-192. [DOI:10.1016/j.freeradbiomed.2018.02.032]
34. Volkov, R.A., I.I. Panchuk, P.M. Mullineaux and F. Schoffle. 2006. Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol. Biol. 61: 733- 746. [DOI:10.1007/s11103-006-0045-4]
35. Vollenweider, P. and M.S. Günthardt-Goerg. 2005. Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environ. Pollut. 137: 455-465. [DOI:10.1016/j.envpol.2005.01.032]
36. Wang, W., B. Vinocur, O. Shoseyov and A. Altman. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9: 244-252. [DOI:10.1016/j.tplants.2004.03.006]
37. Zandalinas, S.I., M.R. Rivero, V. Martin, A. Gomez-Cadenas and V. Arbona. 2016. Tolerance of Citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in absicic acid levels. BMC Plant Biol. 16: 2-16. [DOI:10.1186/s12870-016-0791-7]
38. Zeinanloo, A.A. 2018. Evaluation and selection of superior olive genotypes with high oil and yield. Iranian J. Hort. Sci. Technol. 19: 171-184. (In Persian)
39. Zhao, X., L.K. Huang, X.Q. Zhang, Z. Li, and Y. Peng. 2014. Effects of heat acclimation on photosynthesis, antioxidant enzyme activities and gene expression in Orchardgrass (Dactylis glomerata L.). Molecules, 19: 13564-13576. [DOI:10.3390/molecules190913564]
40. Alexieva, V., I. Sergei, S. Mapelli and E. Karanov. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 24: 1337-1344. [DOI:10.1046/j.1365-3040.2001.00778.x]
41. Apel, K. and H. Hirt. 2004. Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu. Rev. Plant Biol. 55: 373-399. [DOI:10.1146/annurev.arplant.55.031903.141701]
42. Ara, N., K. Nakkanong, W. Lv, J. Yang, Z. Hu and M. Zh. 2013. Antioxidant enzymatic activities and gene expression associated with heat tolerance in the stems and roots of two cucurbit speices (Cucurbita maxima and Cucurbita moschata) and their interspecific inbred line 'Maxchata'. Int. J. Mol. Sci.14: 24008-24028. [DOI:10.3390/ijms141224008]
43. Arzani, K. and I. Arji. 2000. The effect of water stress and deficit irrigation on young potted olive cv. 'Local-Roghani Roodbar. Acta Hort. 537: 879-85. [DOI:10.17660/ActaHortic.2000.537.106]
44. Neto, A.D., J.T. Prico, J. Eneas-Filho, C.E. Braga de Abreu and E. Gomes-Filho. 2006. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ. Exp. Bot. 56: 235-241. [DOI:10.1016/j.envexpbot.2005.01.008]
45. Bates, L.S., R.P. Waldern and I.D. Tear. 1973. Rapid determination of proline for water stress studies. Plant Soil. 39: 205-208. [DOI:10.1007/BF00018060]
46. Binert, G.P., A.B. Moller, K.A., Kristiansen, A. Schulz, I.M. Moller, J.K. Schjoerring and T.P. Jahn. 2007. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 282: 1183-1192. [DOI:10.1074/jbc.M603761200]
47. Bita, C. and T. Gerates. 2013. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 4: 1-18. [DOI:10.3389/fpls.2013.00273]
48. Blokhina, O., E. Virolainen and K.V. Fagerstedt. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91: 179-194. [DOI:10.1093/aob/mcf118]
49. Chance, B. and A.C. Maehly. 1955. Assay of catalases and peroxidases. Meth. Enzymol. 11: 764-755. [DOI:10.1016/S0076-6879(55)02300-8]
50. Cirilli, M., G. Caruso, C. Gennai, S. Urban, E. Frioni, M. Ruzzi, M. Servili, R. Gucci, E. Poerio and R. Muleo. 2017. The role of polyphenoloxidase, peroxidase and β- Glucosidase in phenolics accumulation in Olea europaea L. fruits under different water regimes. Front. Plant Sci. 8: 1-13. [DOI:10.3389/fpls.2017.00717]
51. Cui, L., J. Li, Y. Fan, S. Xu and Z. Zhang. 2006. High temperature effects on photosynthesis, PSII functionally and antioxidant activity of two Festuca arundinacea cultivars with different heat susceptibility. Bot. Studi. 47: 61-69.
52. Filiz, E., I.I. Ozyigit, I.A. Saracoglu, E.M. Uras, U. Sen and B. Yalcin. 2019. Abiotic stress-induced regulation of antioxidant genes in different Arabidopsis ecotypes: microarray data evaluation. Biotechnol. Equip. 33: 128-143. [DOI:10.1080/13102818.2018.1556120]
53. Gholami, R. and M.S. Zahedi. 2019. Identifying superior drought-tolerant olive genotypes and their biochemical and some physiological responses to various irrigation levels. J. Plant Nut. 42: 2057-2069. [DOI:10.1080/01904167.2019.1648672]
54. Gratao, P.L., A. Polle, P.J. Lea and R.A. Azvedo. 2005. Making the life of heavy metal-stressed plants a little easier. Funct. Plant Biol. 32: 481-494. [DOI:10.1071/FP05016]
55. Grisafi, F., E. Bonafede, F.F. Vecchia and N. Rascio. 2004. Some morphological, anatomical, physiological responses of different olive cultivars to high temperatures and drought stress. Acta Bot. Gallica. 151: 241- 253. [DOI:10.1080/12538078.2004.10515427]
56. Hameed, A., M. Goher and N. Iqbal. 2012. Heat stress-induced cell death, changes in antioxidants, lipid peroxidation and protease activity in wheat leaves. J. Plant Growth Regul. 31: 283-291. [DOI:10.1007/s00344-011-9238-4]
57. Hatfield, J.L. and J.H. Prueger. 2015. Temperature extremes: effect on plant growth and development. Weather Clim. Extrem. 10: 4-10. [DOI:10.1016/j.wace.2015.08.001]
58. Haworth, M., G. Marino, C. Brunetti, D. Killi, A. Del Carlo and M. Centritto. 2018. The impact of heat stress and water deficit on the photosynthetic and stomatal physiology of olive (Olea europaea L) - a case study of the 2017 heat wave. Plants. 7: 1-13. [DOI:10.3390/plants7040076]
59. Fields, B.C., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi and P.M. Midgley. 2012. A special report of working groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 582p.
60. Liu, D.F., D. Zhang, G. Liu, S. Hussain and Y.W. Teng. 2013. Influence of heat stress on leaf ultrastructure, photosynthetic performance, and ascorbate peroxidase gene expression of two pear cultivars (Pyrus pyrifolia). J. Zhejiang Univ. Sci. B (Biomed & Biotechnol). 14: 1070-1083. [DOI:10.1631/jzus.B1300094]
61. Ma, Y.H., F.W. Ma, J.K. Zhang, M.J. Li, Y.H. Wang and D. Liang. 2008. Effects of high temperature and gene expression of enzymes involved in ascorbate-glutathion cycle in apple leaves. Plant Sci. 175: 761-766. [DOI:10.1016/j.plantsci.2008.07.010]
62. Mancuso, S. and E. Azarello. 2002. Heat tolerance in olive. Adv. Hort. Sci. 16: 125-130.
63. Nakano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867-880.
64. Mohammadi, H. and A.A. Zeinanloo. 2008. Modeling the thermal adapability of the olive (Olea europaea L.). in Iran. Phys. Geogr. Res. 64: 37-51 (In Persian)
65. Rivero, M.R., M.J. Ruiz, C.P. Garcia, R.L. Lopez-Lefebre, E. Sanchez and L. Romero. 2001. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 160: 315-321. [DOI:10.1016/S0168-9452(00)00395-2]
66. Sairam, R.K., P.S. Deshmukh and D.C. Saxena. 1998. Role of antioxidant systems in wheat genotype tolerance to water stress. Biol. Plant. 41: 387-394. [DOI:10.1023/A:1001898310321]
67. Sharma, P., A.B. Jha, R.S. Dubey and M. Pessarakli. 2012. Reactive oxygen species, oxidative damage and antioxidative defence mechanisms in plants under stressful conditions. J. Bot. 2012: 1-26. [DOI:10.1002/9781118482469.ch4]
68. Smirnoff, N. 1996. The function and metabolism of ascorbic acid in plants. Ann. Bot. 78: 661-669. [DOI:10.1006/anbo.1996.0175]
69. Sofo, A., B. Dichio, C. Xiloyannis and A. Msia. 2005. Antioxidant defences in olive trees during drought stress: changes in activity of some antioxidant enzymes. Funct. Plant Biol. 32: 45-53. [DOI:10.1071/FP04003]
70. Song, Y., Q. Chen, D. Ci, X. Shao and D. Zhang. 2014. Effects of high temperature on photosynthesis and related gene expression in poplar. Plant Biol. 14: 1-20. [DOI:10.1186/1471-2229-14-111]
71. Sreenivasulu, N., K. Ramanjulu, H.S. Ramachandra-Kini, H. Shekar-Shetty, H.S. Savithri and C. Sudhakar. 1999. Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance. Plant Sci. 141: 1-9. [DOI:10.1016/S0168-9452(98)00204-0]
72. Van Ruyskensvelde, F.B. and K. Van Der Kelen. 2018. Post-transcriptional regulation of the oxidative stress response in plants. Free Radic. Biol. Med. 122: 181-192. [DOI:10.1016/j.freeradbiomed.2018.02.032]
73. Volkov, R.A., I.I. Panchuk, P.M. Mullineaux and F. Schoffle. 2006. Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol. Biol. 61: 733- 746. [DOI:10.1007/s11103-006-0045-4]
74. Vollenweider, P. and M.S. Günthardt-Goerg. 2005. Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environ. Pollut. 137: 455-465. [DOI:10.1016/j.envpol.2005.01.032]
75. Wang, W., B. Vinocur, O. Shoseyov and A. Altman. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9: 244-252. [DOI:10.1016/j.tplants.2004.03.006]
76. Zandalinas, S.I., M.R. Rivero, V. Martin, A. Gomez-Cadenas and V. Arbona. 2016. Tolerance of Citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in absicic acid levels. BMC Plant Biol. 16: 2-16. [DOI:10.1186/s12870-016-0791-7]
77. Zeinanloo, A.A. 2018. Evaluation and selection of superior olive genotypes with high oil and yield. Iranian J. Hort. Sci. Technol. 19: 171-184. (In Persian)
78. Zhao, X., L.K. Huang, X.Q. Zhang, Z. Li, and Y. Peng. 2014. Effects of heat acclimation on photosynthesis, antioxidant enzyme activities and gene expression in Orchardgrass (Dactylis glomerata L.). Molecules, 19: 13564-13576. [DOI:10.3390/molecules190913564]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Soleimani A, Ghanbarnejad S, Dastkar E, Ajani A. The Impact of High Temperature Stress on the Activity of Some Antioxidant Enzymes and the Expression Pattern of Relevant Genes in Two Olive Cultivars. IJHST 2022; 23 (3) :463-472
URL: http://journal-irshs.ir/article-1-512-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 23, Issue 3 (Fall 2022) Back to browse issues page
مجله علوم و فنون باغبانی ایران Iranian Journal of Horticultural Science and Technology
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4660