[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
بایگانی مقالات زیر چاپ::
وبگاه های نمایه کننده::
اسامی داوران::
مبانی اخلاقی نشریه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
شماره شاپا
1680-7154
..
ناشر
انجمن علوم باغبانی
..
پیوندهای مفید

انجمن علوم باغبانی ایران
..
آمارهای نشریه
مقالات منتشر شده: 336
نرخ پذیرش: 66.2
نرخ رد: 33.8
میانگین داوری: 266 روز
میانگین انتشار: 255 روز
..
:: جلد 23، شماره 3 - ( پاییز 1401 ) ::
جلد 23 شماره 3 صفحات 472-463 برگشت به فهرست نسخه ها
اثر تنش دمای بالا بر فعالیت برخی آنزیم‌‌های آنتی‌‌اکسیدانت و الگوی بیان ژن‌‌های مربوطه در دو رقم زیتون
علی سلیمانی ، سپیده قنبرنژاد ، ابراهیم دستکار ، احمد اجنی
دانشگاه زنجان
چکیده:   (862 مشاهده)
با توجه به نقش آنزیم‌‌های آنتی‌‌اکسیدانت در کنترل تاثیرات نامطلوب تنش‌‌های غیرزیستی، اثر تنش دمای بالا بر فعالیت و الگوی بیان ژن‌‌های برخی از این آنزیم‌‌ها، در نهال‌‌های یکساله رقم‌‌های زیتون دیره و زرد مطالعه شد. پاسخ نهالها پس از انتقال به اتاقک رشد مصنوعی در سه تیمار دمایی 32، 45 و 36 درجه سلسیوس، به‌ترتیب برای مرحله قبل، همزمان و بعد از تنش، به صورت آزمایش فاکتوریل در قالب طرح به‌طورکامل تصادفی، ارزیابی شد. تحت تنش دمایی، درصد رشد رویشی تجمعی در رقم زرد و تجمع پرولین در بافت برگ رقم دیره بالا بود. در این شرایط، در هر دو رقم میزان فعالیت آنزیم‌‌های پراکسیداز (POD) و سوپراکسیددیسموتاز (SOD) افزایش یافت. در مرحله بعد از تنش، تنها در رقم زرد میزان فعالیت آنزیم آسکوربات پراکسیداز (APX) افزایش یافت. تغییر الگوی بیان ژن‌‌های کدکننده آنزیم‌‌های POD و SOD، تحت شرایط تنش در هر دو رقم مشابه فعالیت این آنزیم‌‌ها بود، اما شدت این تغییرها در رقم دیره، در حدود دو برابر بیشتر از رقم زرد بود. الگوی بیان ژن APX تحت تنش و بعد از تنش در هر دو رقم کاهشی بود. در کل، نوسانات بیان ژن و فعالیت آنزیم‌‌ها در رقم زرد کمتر بوده و این رقم بازیابی فیزیولوژیکی سریع‌‌تری به دنبال رفع تنش دمایی داشت.
واژه‌های کلیدی: آنزیم‌‌های آنتی‌‌اکسیدانت، بیان ژن، تنش دمایی، زیتون
متن کامل [PDF 550 kb]   (248 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: میوه کاری(میوه های ریز، معندله و سردسیری، نیمه گرمسیری، میوه‌های خشک)
دریافت: 1399/9/15 | پذیرش: 1400/11/23 | انتشار: 1401/9/19
فهرست منابع
1. Alexieva, V., I. Sergei, S. Mapelli and E. Karanov. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 24: 1337-1344. [DOI:10.1046/j.1365-3040.2001.00778.x]
2. Apel, K. and H. Hirt. 2004. Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu. Rev. Plant Biol. 55: 373-399. [DOI:10.1146/annurev.arplant.55.031903.141701]
3. Ara, N., K. Nakkanong, W. Lv, J. Yang, Z. Hu and M. Zh. 2013. Antioxidant enzymatic activities and gene expression associated with heat tolerance in the stems and roots of two cucurbit speices (Cucurbita maxima and Cucurbita moschata) and their interspecific inbred line 'Maxchata'. Int. J. Mol. Sci.14: 24008-24028. [DOI:10.3390/ijms141224008]
4. Arzani, K. and I. Arji. 2000. The effect of water stress and deficit irrigation on young potted olive cv. 'Local-Roghani Roodbar. Acta Hort. 537: 879-85. [DOI:10.17660/ActaHortic.2000.537.106]
5. Neto, A.D., J.T. Prico, J. Eneas-Filho, C.E. Braga de Abreu and E. Gomes-Filho. 2006. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ. Exp. Bot. 56: 235-241. [DOI:10.1016/j.envexpbot.2005.01.008]
6. Bates, L.S., R.P. Waldern and I.D. Tear. 1973. Rapid determination of proline for water stress studies. Plant Soil. 39: 205-208. [DOI:10.1007/BF00018060]
7. Binert, G.P., A.B. Moller, K.A., Kristiansen, A. Schulz, I.M. Moller, J.K. Schjoerring and T.P. Jahn. 2007. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 282: 1183-1192. [DOI:10.1074/jbc.M603761200]
8. Bita, C. and T. Gerates. 2013. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 4: 1-18. [DOI:10.3389/fpls.2013.00273]
9. Blokhina, O., E. Virolainen and K.V. Fagerstedt. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91: 179-194. [DOI:10.1093/aob/mcf118]
10. Chance, B. and A.C. Maehly. 1955. Assay of catalases and peroxidases. Meth. Enzymol. 11: 764-755. [DOI:10.1016/S0076-6879(55)02300-8]
11. Cirilli, M., G. Caruso, C. Gennai, S. Urban, E. Frioni, M. Ruzzi, M. Servili, R. Gucci, E. Poerio and R. Muleo. 2017. The role of polyphenoloxidase, peroxidase and β- Glucosidase in phenolics accumulation in Olea europaea L. fruits under different water regimes. Front. Plant Sci. 8: 1-13. [DOI:10.3389/fpls.2017.00717]
12. Cui, L., J. Li, Y. Fan, S. Xu and Z. Zhang. 2006. High temperature effects on photosynthesis, PSII functionally and antioxidant activity of two Festuca arundinacea cultivars with different heat susceptibility. Bot. Studi. 47: 61-69.
13. Filiz, E., I.I. Ozyigit, I.A. Saracoglu, E.M. Uras, U. Sen and B. Yalcin. 2019. Abiotic stress-induced regulation of antioxidant genes in different Arabidopsis ecotypes: microarray data evaluation. Biotechnol. Equip. 33: 128-143. [DOI:10.1080/13102818.2018.1556120]
14. Gholami, R. and M.S. Zahedi. 2019. Identifying superior drought-tolerant olive genotypes and their biochemical and some physiological responses to various irrigation levels. J. Plant Nut. 42: 2057-2069. [DOI:10.1080/01904167.2019.1648672]
15. Gratao, P.L., A. Polle, P.J. Lea and R.A. Azvedo. 2005. Making the life of heavy metal-stressed plants a little easier. Funct. Plant Biol. 32: 481-494. [DOI:10.1071/FP05016]
16. Grisafi, F., E. Bonafede, F.F. Vecchia and N. Rascio. 2004. Some morphological, anatomical, physiological responses of different olive cultivars to high temperatures and drought stress. Acta Bot. Gallica. 151: 241- 253. [DOI:10.1080/12538078.2004.10515427]
17. Hameed, A., M. Goher and N. Iqbal. 2012. Heat stress-induced cell death, changes in antioxidants, lipid peroxidation and protease activity in wheat leaves. J. Plant Growth Regul. 31: 283-291. [DOI:10.1007/s00344-011-9238-4]
18. Hatfield, J.L. and J.H. Prueger. 2015. Temperature extremes: effect on plant growth and development. Weather Clim. Extrem. 10: 4-10. [DOI:10.1016/j.wace.2015.08.001]
19. Haworth, M., G. Marino, C. Brunetti, D. Killi, A. Del Carlo and M. Centritto. 2018. The impact of heat stress and water deficit on the photosynthetic and stomatal physiology of olive (Olea europaea L) - a case study of the 2017 heat wave. Plants. 7: 1-13. [DOI:10.3390/plants7040076]
20. Fields, B.C., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi and P.M. Midgley. 2012. A special report of working groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 582p.
21. Liu, D.F., D. Zhang, G. Liu, S. Hussain and Y.W. Teng. 2013. Influence of heat stress on leaf ultrastructure, photosynthetic performance, and ascorbate peroxidase gene expression of two pear cultivars (Pyrus pyrifolia). J. Zhejiang Univ. Sci. B (Biomed & Biotechnol). 14: 1070-1083. [DOI:10.1631/jzus.B1300094]
22. Ma, Y.H., F.W. Ma, J.K. Zhang, M.J. Li, Y.H. Wang and D. Liang. 2008. Effects of high temperature and gene expression of enzymes involved in ascorbate-glutathion cycle in apple leaves. Plant Sci. 175: 761-766. [DOI:10.1016/j.plantsci.2008.07.010]
23. Mancuso, S. and E. Azarello. 2002. Heat tolerance in olive. Adv. Hort. Sci. 16: 125-130.
24. Nakano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867-880.
25. Mohammadi, H. and A.A. Zeinanloo. 2008. Modeling the thermal adapability of the olive (Olea europaea L.). in Iran. Phys. Geogr. Res. 64: 37-51 (In Persian)
26. Rivero, M.R., M.J. Ruiz, C.P. Garcia, R.L. Lopez-Lefebre, E. Sanchez and L. Romero. 2001. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 160: 315-321. [DOI:10.1016/S0168-9452(00)00395-2]
27. Sairam, R.K., P.S. Deshmukh and D.C. Saxena. 1998. Role of antioxidant systems in wheat genotype tolerance to water stress. Biol. Plant. 41: 387-394. [DOI:10.1023/A:1001898310321]
28. Sharma, P., A.B. Jha, R.S. Dubey and M. Pessarakli. 2012. Reactive oxygen species, oxidative damage and antioxidative defence mechanisms in plants under stressful conditions. J. Bot. 2012: 1-26. [DOI:10.1002/9781118482469.ch4]
29. Smirnoff, N. 1996. The function and metabolism of ascorbic acid in plants. Ann. Bot. 78: 661-669. [DOI:10.1006/anbo.1996.0175]
30. Sofo, A., B. Dichio, C. Xiloyannis and A. Msia. 2005. Antioxidant defences in olive trees during drought stress: changes in activity of some antioxidant enzymes. Funct. Plant Biol. 32: 45-53. [DOI:10.1071/FP04003]
31. Song, Y., Q. Chen, D. Ci, X. Shao and D. Zhang. 2014. Effects of high temperature on photosynthesis and related gene expression in poplar. Plant Biol. 14: 1-20. [DOI:10.1186/1471-2229-14-111]
32. Sreenivasulu, N., K. Ramanjulu, H.S. Ramachandra-Kini, H. Shekar-Shetty, H.S. Savithri and C. Sudhakar. 1999. Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance. Plant Sci. 141: 1-9. [DOI:10.1016/S0168-9452(98)00204-0]
33. Van Ruyskensvelde, F.B. and K. Van Der Kelen. 2018. Post-transcriptional regulation of the oxidative stress response in plants. Free Radic. Biol. Med. 122: 181-192. [DOI:10.1016/j.freeradbiomed.2018.02.032]
34. Volkov, R.A., I.I. Panchuk, P.M. Mullineaux and F. Schoffle. 2006. Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol. Biol. 61: 733- 746. [DOI:10.1007/s11103-006-0045-4]
35. Vollenweider, P. and M.S. Günthardt-Goerg. 2005. Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environ. Pollut. 137: 455-465. [DOI:10.1016/j.envpol.2005.01.032]
36. Wang, W., B. Vinocur, O. Shoseyov and A. Altman. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9: 244-252. [DOI:10.1016/j.tplants.2004.03.006]
37. Zandalinas, S.I., M.R. Rivero, V. Martin, A. Gomez-Cadenas and V. Arbona. 2016. Tolerance of Citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in absicic acid levels. BMC Plant Biol. 16: 2-16. [DOI:10.1186/s12870-016-0791-7]
38. Zeinanloo, A.A. 2018. Evaluation and selection of superior olive genotypes with high oil and yield. Iranian J. Hort. Sci. Technol. 19: 171-184. (In Persian)
39. Zhao, X., L.K. Huang, X.Q. Zhang, Z. Li, and Y. Peng. 2014. Effects of heat acclimation on photosynthesis, antioxidant enzyme activities and gene expression in Orchardgrass (Dactylis glomerata L.). Molecules, 19: 13564-13576. [DOI:10.3390/molecules190913564]
40. Alexieva, V., I. Sergei, S. Mapelli and E. Karanov. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 24: 1337-1344. [DOI:10.1046/j.1365-3040.2001.00778.x]
41. Apel, K. and H. Hirt. 2004. Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu. Rev. Plant Biol. 55: 373-399. [DOI:10.1146/annurev.arplant.55.031903.141701]
42. Ara, N., K. Nakkanong, W. Lv, J. Yang, Z. Hu and M. Zh. 2013. Antioxidant enzymatic activities and gene expression associated with heat tolerance in the stems and roots of two cucurbit speices (Cucurbita maxima and Cucurbita moschata) and their interspecific inbred line 'Maxchata'. Int. J. Mol. Sci.14: 24008-24028. [DOI:10.3390/ijms141224008]
43. Arzani, K. and I. Arji. 2000. The effect of water stress and deficit irrigation on young potted olive cv. 'Local-Roghani Roodbar. Acta Hort. 537: 879-85. [DOI:10.17660/ActaHortic.2000.537.106]
44. Neto, A.D., J.T. Prico, J. Eneas-Filho, C.E. Braga de Abreu and E. Gomes-Filho. 2006. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ. Exp. Bot. 56: 235-241. [DOI:10.1016/j.envexpbot.2005.01.008]
45. Bates, L.S., R.P. Waldern and I.D. Tear. 1973. Rapid determination of proline for water stress studies. Plant Soil. 39: 205-208. [DOI:10.1007/BF00018060]
46. Binert, G.P., A.B. Moller, K.A., Kristiansen, A. Schulz, I.M. Moller, J.K. Schjoerring and T.P. Jahn. 2007. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 282: 1183-1192. [DOI:10.1074/jbc.M603761200]
47. Bita, C. and T. Gerates. 2013. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 4: 1-18. [DOI:10.3389/fpls.2013.00273]
48. Blokhina, O., E. Virolainen and K.V. Fagerstedt. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91: 179-194. [DOI:10.1093/aob/mcf118]
49. Chance, B. and A.C. Maehly. 1955. Assay of catalases and peroxidases. Meth. Enzymol. 11: 764-755. [DOI:10.1016/S0076-6879(55)02300-8]
50. Cirilli, M., G. Caruso, C. Gennai, S. Urban, E. Frioni, M. Ruzzi, M. Servili, R. Gucci, E. Poerio and R. Muleo. 2017. The role of polyphenoloxidase, peroxidase and β- Glucosidase in phenolics accumulation in Olea europaea L. fruits under different water regimes. Front. Plant Sci. 8: 1-13. [DOI:10.3389/fpls.2017.00717]
51. Cui, L., J. Li, Y. Fan, S. Xu and Z. Zhang. 2006. High temperature effects on photosynthesis, PSII functionally and antioxidant activity of two Festuca arundinacea cultivars with different heat susceptibility. Bot. Studi. 47: 61-69.
52. Filiz, E., I.I. Ozyigit, I.A. Saracoglu, E.M. Uras, U. Sen and B. Yalcin. 2019. Abiotic stress-induced regulation of antioxidant genes in different Arabidopsis ecotypes: microarray data evaluation. Biotechnol. Equip. 33: 128-143. [DOI:10.1080/13102818.2018.1556120]
53. Gholami, R. and M.S. Zahedi. 2019. Identifying superior drought-tolerant olive genotypes and their biochemical and some physiological responses to various irrigation levels. J. Plant Nut. 42: 2057-2069. [DOI:10.1080/01904167.2019.1648672]
54. Gratao, P.L., A. Polle, P.J. Lea and R.A. Azvedo. 2005. Making the life of heavy metal-stressed plants a little easier. Funct. Plant Biol. 32: 481-494. [DOI:10.1071/FP05016]
55. Grisafi, F., E. Bonafede, F.F. Vecchia and N. Rascio. 2004. Some morphological, anatomical, physiological responses of different olive cultivars to high temperatures and drought stress. Acta Bot. Gallica. 151: 241- 253. [DOI:10.1080/12538078.2004.10515427]
56. Hameed, A., M. Goher and N. Iqbal. 2012. Heat stress-induced cell death, changes in antioxidants, lipid peroxidation and protease activity in wheat leaves. J. Plant Growth Regul. 31: 283-291. [DOI:10.1007/s00344-011-9238-4]
57. Hatfield, J.L. and J.H. Prueger. 2015. Temperature extremes: effect on plant growth and development. Weather Clim. Extrem. 10: 4-10. [DOI:10.1016/j.wace.2015.08.001]
58. Haworth, M., G. Marino, C. Brunetti, D. Killi, A. Del Carlo and M. Centritto. 2018. The impact of heat stress and water deficit on the photosynthetic and stomatal physiology of olive (Olea europaea L) - a case study of the 2017 heat wave. Plants. 7: 1-13. [DOI:10.3390/plants7040076]
59. Fields, B.C., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi and P.M. Midgley. 2012. A special report of working groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 582p.
60. Liu, D.F., D. Zhang, G. Liu, S. Hussain and Y.W. Teng. 2013. Influence of heat stress on leaf ultrastructure, photosynthetic performance, and ascorbate peroxidase gene expression of two pear cultivars (Pyrus pyrifolia). J. Zhejiang Univ. Sci. B (Biomed & Biotechnol). 14: 1070-1083. [DOI:10.1631/jzus.B1300094]
61. Ma, Y.H., F.W. Ma, J.K. Zhang, M.J. Li, Y.H. Wang and D. Liang. 2008. Effects of high temperature and gene expression of enzymes involved in ascorbate-glutathion cycle in apple leaves. Plant Sci. 175: 761-766. [DOI:10.1016/j.plantsci.2008.07.010]
62. Mancuso, S. and E. Azarello. 2002. Heat tolerance in olive. Adv. Hort. Sci. 16: 125-130.
63. Nakano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867-880.
64. Mohammadi, H. and A.A. Zeinanloo. 2008. Modeling the thermal adapability of the olive (Olea europaea L.). in Iran. Phys. Geogr. Res. 64: 37-51 (In Persian)
65. Rivero, M.R., M.J. Ruiz, C.P. Garcia, R.L. Lopez-Lefebre, E. Sanchez and L. Romero. 2001. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 160: 315-321. [DOI:10.1016/S0168-9452(00)00395-2]
66. Sairam, R.K., P.S. Deshmukh and D.C. Saxena. 1998. Role of antioxidant systems in wheat genotype tolerance to water stress. Biol. Plant. 41: 387-394. [DOI:10.1023/A:1001898310321]
67. Sharma, P., A.B. Jha, R.S. Dubey and M. Pessarakli. 2012. Reactive oxygen species, oxidative damage and antioxidative defence mechanisms in plants under stressful conditions. J. Bot. 2012: 1-26. [DOI:10.1002/9781118482469.ch4]
68. Smirnoff, N. 1996. The function and metabolism of ascorbic acid in plants. Ann. Bot. 78: 661-669. [DOI:10.1006/anbo.1996.0175]
69. Sofo, A., B. Dichio, C. Xiloyannis and A. Msia. 2005. Antioxidant defences in olive trees during drought stress: changes in activity of some antioxidant enzymes. Funct. Plant Biol. 32: 45-53. [DOI:10.1071/FP04003]
70. Song, Y., Q. Chen, D. Ci, X. Shao and D. Zhang. 2014. Effects of high temperature on photosynthesis and related gene expression in poplar. Plant Biol. 14: 1-20. [DOI:10.1186/1471-2229-14-111]
71. Sreenivasulu, N., K. Ramanjulu, H.S. Ramachandra-Kini, H. Shekar-Shetty, H.S. Savithri and C. Sudhakar. 1999. Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance. Plant Sci. 141: 1-9. [DOI:10.1016/S0168-9452(98)00204-0]
72. Van Ruyskensvelde, F.B. and K. Van Der Kelen. 2018. Post-transcriptional regulation of the oxidative stress response in plants. Free Radic. Biol. Med. 122: 181-192. [DOI:10.1016/j.freeradbiomed.2018.02.032]
73. Volkov, R.A., I.I. Panchuk, P.M. Mullineaux and F. Schoffle. 2006. Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol. Biol. 61: 733- 746. [DOI:10.1007/s11103-006-0045-4]
74. Vollenweider, P. and M.S. Günthardt-Goerg. 2005. Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environ. Pollut. 137: 455-465. [DOI:10.1016/j.envpol.2005.01.032]
75. Wang, W., B. Vinocur, O. Shoseyov and A. Altman. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9: 244-252. [DOI:10.1016/j.tplants.2004.03.006]
76. Zandalinas, S.I., M.R. Rivero, V. Martin, A. Gomez-Cadenas and V. Arbona. 2016. Tolerance of Citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in absicic acid levels. BMC Plant Biol. 16: 2-16. [DOI:10.1186/s12870-016-0791-7]
77. Zeinanloo, A.A. 2018. Evaluation and selection of superior olive genotypes with high oil and yield. Iranian J. Hort. Sci. Technol. 19: 171-184. (In Persian)
78. Zhao, X., L.K. Huang, X.Q. Zhang, Z. Li, and Y. Peng. 2014. Effects of heat acclimation on photosynthesis, antioxidant enzyme activities and gene expression in Orchardgrass (Dactylis glomerata L.). Molecules, 19: 13564-13576. [DOI:10.3390/molecules190913564]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Soleimani A, Ghanbarnejad S, Dastkar E, Ajani A. The Impact of High Temperature Stress on the Activity of Some Antioxidant Enzymes and the Expression Pattern of Relevant Genes in Two Olive Cultivars. IJHST 2022; 23 (3) :463-472
URL: http://journal-irshs.ir/article-1-512-fa.html

سلیمانی علی، قنبرنژاد سپیده، دستکار ابراهیم، اجنی احمد. اثر تنش دمای بالا بر فعالیت برخی آنزیم‌‌های آنتی‌‌اکسیدانت و الگوی بیان ژن‌‌های مربوطه در دو رقم زیتون. مجله علوم و فنون باغبانی ایران. 1401; 23 (3) :463-472

URL: http://journal-irshs.ir/article-1-512-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
جلد 23، شماره 3 - ( پاییز 1401 ) برگشت به فهرست نسخه ها
مجله علوم و فنون باغبانی ایران Iranian Journal of Horticultural Science and Technology
Persian site map - English site map - Created in 0.05 seconds with 45 queries by YEKTAWEB 4660